CERTIFICATE

IMPACT FACTOR 2021

Subject Area

  • Life Sciences / Biology
  • Architecture / Building Management
  • Asian Studies
  • Business & Management
  • Chemistry
  • Computer Science
  • Economics & Finance
  • Engineering / Acoustics
  • Environmental Science
  • Agricultural Sciences
  • Pharmaceutical Sciences
  • General Sciences
  • Materials Science
  • Mathematics
  • Medicine
  • Nanotechnology & Nanoscience
  • Nonlinear Science
  • Chaos & Dynamical Systems
  • Physics
  • Social Sciences & Humanities

Why Us? >>

  • Open Access
  • Peer Reviewed
  • Rapid Publication
  • Life time hosting
  • Free promotion service
  • Free indexing service
  • More citations
  • Search engine friendly

Survey on data mining methodologies for cyber credit-card and credit-card fraud detection system

Author: 
Vishalakshi, N. S. and Deepika, N.
Subject Area: 
Physical Sciences and Engineering
Abstract: 

Since the evolution of the internet, many small and large companies have moved their business to the internet to provide services to customers worldwide. To understand how cyber credit card fraud are being committed, in this we study the different types of cyber fraudsters that commit cyber credit card fraud and the techniques used by these cyber fraudsters to commit fraud on the internet is discussed. Fraud detection is a technique of identifying prohibited acts that are occurring around the world. Therefore, the need to ensure secure transactions for credit-card owners. This system implements the supervised anomaly detection algorithm of Data mining to detect fraud in a real time transaction on the internet, and thereby classifying the transaction as legitimate, suspicious fraud and illegitimate transaction. The anomaly detection algorithm is designed on the Neural Networks which implements the working principal of the human brain. The techniques of Data mining are also popular in detecting cyber credit-card fraud. An effective use of data mining techniques and its algorithms can be implemented to detect or predict fraud through Knowledge Discovery from unusual patterns from gathered data set. In this paper, we discussed about the various credit-card fraudsters techniques and also the detection methods for cyber credit card transactions. The goal of this paper is to provide a system’s model for cyber credit card fraud detection and a comprehensive review of Hidden Markov Model (HMM) and Neural Networks (NN) techniques to detect credit card fraudulent in an effective way.

PDF file: 

ONLINE PAYPAL PAYMENT

IJMCE RECOMMENDATION

Advantages of IJCR

  • Rapid Publishing
  • Professional publishing practices
  • Indexing in leading database
  • High level of citation
  • High Qualitiy reader base
  • High level author suport

Plagiarism Detection

IJCR is following an instant policy on rejection those received papers with plagiarism rate of more than 20%. So, All of authors and contributors must check their papers before submission to making assurance of following our anti-plagiarism policies.

 

EDITORIAL BOARD

Dr. Swamy KRM
India
Dr. Abdul Hannan A.M.S
Saudi Arabia.
Luai Farhan Zghair
Iraq
Hasan Ali Abed Al-Zu’bi
Jordanian
Fredrick OJIJA
Tanzanian
Firuza M. Tursunkhodjaeva
Uzbekistan
Faraz Ahmed Farooqi
Saudi Arabia
Eric Randy Reyes Politud
Philippines
Elsadig Gasoom FadelAlla Elbashir
Sudan
Eapen, Asha Sarah
United State
Dr.Arun Kumar A
India
Dr. Zafar Iqbal
Pakistan
Dr. SHAHERA S.PATEL
India
Dr. Ruchika Khanna
India
Dr. Recep TAS
Turkey
Dr. Rasha Ali Eldeeb
Egypt
Dr. Pralhad Kanhaiyalal Rahangdale
India
DR. PATRICK D. CERNA
Philippines
Dr. Nicolas Padilla- Raygoza
Mexico
Dr. Mustafa Y. G. Younis
Libiya
Dr. Muhammad shoaib Ahmedani
Saudi Arabia
DR. MUHAMMAD ISMAIL MOHMAND
United State
DR. MAHESH SHIVAJI CHAVAN
India
DR. M. ARUNA
India
Dr. Lim Gee Nee
Malaysia
Dr. Jatinder Pal Singh Chawla
India
DR. IRAM BOKHARI
Pakistan
Dr. FARHAT NAZ RAHMAN
Pakistan
Dr. Devendra kumar Gupta
India
Dr. ASHWANI KUMAR DUBEY
India
Dr. Ali Seidi
Iran
Dr. Achmad Choerudin
Indonesia
Dr Ashok Kumar Verma
India
Thi Mong Diep NGUYEN
France
Dr. Muhammad Akram
Pakistan
Dr. Imran Azad
Oman
Dr. Meenakshi Malik
India
Aseel Hadi Hamzah
Iraq
Anam Bhatti
Malaysia
Md. Amir Hossain
Bangladesh
Ahmet İPEKÇİ
Turkey
Mirzadi Gohari
Iran