CERTIFICATE

IMPACT FACTOR 2021

Subject Area

  • Life Sciences / Biology
  • Architecture / Building Management
  • Asian Studies
  • Business & Management
  • Chemistry
  • Computer Science
  • Economics & Finance
  • Engineering / Acoustics
  • Environmental Science
  • Agricultural Sciences
  • Pharmaceutical Sciences
  • General Sciences
  • Materials Science
  • Mathematics
  • Medicine
  • Nanotechnology & Nanoscience
  • Nonlinear Science
  • Chaos & Dynamical Systems
  • Physics
  • Social Sciences & Humanities

Why Us? >>

  • Open Access
  • Peer Reviewed
  • Rapid Publication
  • Life time hosting
  • Free promotion service
  • Free indexing service
  • More citations
  • Search engine friendly

Review on DNA damage, repair and DNA sequencing

Author: 
Sujana, G. and Harinatha Reddy, A.
Subject Area: 
Life Sciences
Abstract: 

DNA damage, due to environmental factors and normal metabolic processes inside the cell, occurs at a rate of 10,000 to 1,000,000 molecular lesions per cell per day.[1] While this constitutes only 0.000165% of the human genome's approximately 6 billion bases (3 billion base pairs), unrepaired lesions in critical genes (such as tumor suppressor genes) can impede a cell's ability to carry out its function and appreciably increase the likelihood of tumor formation and contribute to tumour heterogeneity. The vast majority of DNA damage affects the primary structure of the double helix; that is, the bases themselves are chemically modified. These modifications can in turn disrupt the molecules' regular helical structure by introducing non-native chemical bonds or bulky adducts that do not fit in the standard double helix. Unlike proteins and RNA, DNA usually lacks tertiary structure and therefore damage or disturbance does not occur at that level. DNA is, however, super coiled and wound around "packaging" proteins called histones (in eukaryotes), and both superstructures are vulnerable to the effects of DNA damage. Cells annot function if DNA damage corrupts the integrity and accessibility of essential information in the genome (but cells remain superficially functional when so-called "non-essential" genes are missing or damaged). Depending on the type of damage inflicted on the DNA's double helical structure, a variety of repair strategies have evolved to restore lost information. If possible, cells use the unmodified complementary strand of the DNA or the sister chromatid as a template to recover the original information. Without access to a template, cells use an error-prone recovery mechanism known as translesion synthesis as a last resort. Damage to DNA alters the spatial configuration of the helix, and such alterations can be detected by the cell. Once damage is localized, specific DNA repair molecules bind at or near the site of damage, inducing other molecules to bind and form a complex that enables the actual repair to take place. Dynamic programming can be useful in aligning nucleotide to protein sequences, a task complicated by the need to take into account frame shift mutations (usually insertions or deletions). The frame search method produces a series of global or local pair wise alignments between a query nucleotide sequence and a search set of protein sequences, or vice versa. Its ability to evaluate frame shifts offset by an arbitrary number of nucleotides makes the method useful for sequences containing large numbers of indels, which can be very difficult to align with more efficient heuristic methods. In practice, the method requires large amounts of computing power or a system whose architecture is specialized for dynamic programming. The BLAST and EMBOSS suites provide basic tools for creating translated alignments (though some of these approaches take advantage of side-effects of sequence searching capabilities of the tools). More general methods are available from both commercial sources, such as Frame Search, distributed as part of the Accelrys GCG package, and Open Source software such as Genewise. The dynamic programming method is guaranteed to find an optimal alignment given a particular scoring function; however, identifying a good scoring function is often an empirical rather than a theoretical matter. Although dynamic programming is extensible to more than two sequences, it is prohibitively slow for large numbers of or extremely long sequences [2]. Sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences [3]. Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix. Gaps are inserted between the residues so that identical or similar characters are aligned in successive columns.

PDF file: 

CALL FOR PAPERS

 

ONLINE PAYPAL PAYMENT

IJMCE RECOMMENDATION

Advantages of IJCR

  • Rapid Publishing
  • Professional publishing practices
  • Indexing in leading database
  • High level of citation
  • High Qualitiy reader base
  • High level author suport

Plagiarism Detection

IJCR is following an instant policy on rejection those received papers with plagiarism rate of more than 20%. So, All of authors and contributors must check their papers before submission to making assurance of following our anti-plagiarism policies.

 

EDITORIAL BOARD

CHUDE NKIRU PATRICIA
Nigeria
Dr. Swamy KRM
India
Dr. Abdul Hannan A.M.S
Saudi Arabia.
Luai Farhan Zghair
Iraq
Hasan Ali Abed Al-Zu’bi
Jordanian
Fredrick OJIJA
Tanzanian
Firuza M. Tursunkhodjaeva
Uzbekistan
Faraz Ahmed Farooqi
Saudi Arabia
Eric Randy Reyes Politud
Philippines
Elsadig Gasoom FadelAlla Elbashir
Sudan
Eapen, Asha Sarah
United State
Dr.Arun Kumar A
India
Dr. Zafar Iqbal
Pakistan
Dr. SHAHERA S.PATEL
India
Dr. Ruchika Khanna
India
Dr. Recep TAS
Turkey
Dr. Rasha Ali Eldeeb
Egypt
Dr. Pralhad Kanhaiyalal Rahangdale
India
DR. PATRICK D. CERNA
Philippines
Dr. Nicolas Padilla- Raygoza
Mexico
Dr. Mustafa Y. G. Younis
Libiya
Dr. Muhammad shoaib Ahmedani
Saudi Arabia
DR. MUHAMMAD ISMAIL MOHMAND
United State
DR. MAHESH SHIVAJI CHAVAN
India
DR. M. ARUNA
India
Dr. Lim Gee Nee
Malaysia
Dr. Jatinder Pal Singh Chawla
India
DR. IRAM BOKHARI
Pakistan
Dr. FARHAT NAZ RAHMAN
Pakistan
Dr. Devendra kumar Gupta
India
Dr. ASHWANI KUMAR DUBEY
India
Dr. Ali Seidi
Iran
Dr. Achmad Choerudin
Indonesia
Dr Ashok Kumar Verma
India
Thi Mong Diep NGUYEN
France
Dr. Muhammad Akram
Pakistan
Dr. Imran Azad
Oman
Dr. Meenakshi Malik
India
Aseel Hadi Hamzah
Iraq
Anam Bhatti
Malaysia
Md. Amir Hossain
Bangladesh
Ahmet İPEKÇİ
Turkey
Mirzadi Gohari
Iran