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ARTICLE INFO                                       ABSTRACT 
 

A simple computational method (SCM) to analyze a class of (s,S) type inventory 
problem is developed. Under this (s, S) policy, (i) the number of units demanded where 
d = 1,2,... a ( s) at successive demand epochs form a Markov chain (MC)  with one 
step transition probability matrix (TPM) P and (ii) the replenishments are 
instantaneous. This method gives the algorithm for computation of stationary 
probabilities of inventory process, joint probability function of number of transitions 
and quantities of replenishments per cycle, conditional and unconditional average 
costs. Illustrative example for a few special cases are provided, which strengthen the 
applicability of the SCM to practical.  

 

 
 

 

INTRODUCTION 
     Numerous methods have been suggested by various 
authors for formulating and finding optimal inventory 
policies which have more number of practical applications 
in real life situations. Such eventualities with 
modifications have been increasing in the inventory 
policies of the (s,S) types also. One more possible way out 
is discussed below. 
              In this paper, a different method of approach for 
the analysis of (s, S)  inventory models, wherein the 
number of units demanded at successive demand epochs 
are Markov dependent as introduced by Krishnamoothy 
and Lakshmi (1991) is discussed. For a detailed discussion 
about the systematic analysis of various types of (s, S) 
inventory system refer Srinivasan and Ravichandaran 
(1994), Hiller and Liberman, (1990) and Krishnamoorthy 
et al., (1995).   
A MARKOV DEPENDENT  
[(s, S), d, P] INVENTORY MODEL: 
     For the present (s, S)  inventory problem, it is assumed 
that the bulk quantity demanded, say ‘d’ at a demand 
epoch is a random variable with d = 1, 2, … , a ; a  s  
such that the sequence of units demanded in the 
successive demand epochs forms a finite   state Mc on the 
state space {1, 2, …, a } with TPM ‘p’ . To avoid the 
perpetual shortage, it is assumed that (S-s) > s. further if 
the inventory level is s+1 or greater at a demand epoch, 
then no order is placed. On the other hand , if the 
inventory level either falls to ‘s’ or dips below ‘s’ at an 
epoch, an order is placed for at least (S-s) units. The 
quantity ordered is subject to review at the epoch of 
replenishment so as to bring inventory to level s.  
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Zero lead time is assumed. This kind of inventory model 
may be represented in symbols as [(s, S), a, P].  
     Further the inter occurrence times between successive 
demand epochs are assumed to be independent and 
identically distributed ( i. i . d) random variables with 
distribution function G (.) and density function g(.). If the 
demand is for ‘I’ units at an epoch, it may be called as I - 
type demand for I = 1, 2, …, a. 

Notations 

{I(t)} : inventory level process 

* : Convolution 

E1 : {1, 2, ..., a – 1, a} 

E2 : {s + 1, s + 2, ... s – 1, S} 

E : { (1, s + 1), (2, s + 1), (3, s + 1), ..., (a – 1, s + 1), (a, s + 1) 

  (1, s + 2), (2, s + 2), (3, s + 2), ..., (a – 1, s + 2), (a, s + 2) 

   (1, S – a), (2, S – a), (3, S – a), ..., (a – 1, S – a), (a, S – a) 

   (1, S – a), (2, S – a), (3, S – a + 1), ..., (a – 1, S – a + 1) 

   (1, S – a), (2, S – a), (3, S – a + 2), ..., 

   (1, S – 3), (2, S – 3), (3, S – 3) 

   (1, S – 2), (2, S – 2) 

   (1, S – 1) 

   (1, S),  (2, S),  (3, S), ...,  (a, S)} 

E3 : {S – s, S – s + 1, ..., S – s + (a – 1) } 

E4 : {s – a + 1, s – a + 2, ..., s – 1, s} 

E5 (r) : {r, r + 1, ..., S – s}, where r is the smallest 

   integer  

a

sS )( 
 

N : {1, 2, ...,} 

     Here, the set E is a proper subset of E1 x E2 i.e. E  E2 
x E2. It is due to the fact that the continuous time, 
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inventory process decreases from the levels S, S – 1, S – 
2,... etc., with instantaneous reflecting barriers at each of 
its levels i  E4 depending upon the demands. Hence the 
inventory level never decreases to zero at any instant. 
Further E3 forms the set of all possible number of units of 
replenishments. The set E5(r) is the collection of all 
possible number of transitions in a cycle of 
replenishments. 
Markov Renewal Inventory Process 
     Let 0 = T0 < T1 < T2 ... be the successive demand 
epochs and X0, X1, X2, ... be the number of units 
demanded at these epochs respectively, so that the 
sequence X={Xn} forms a MC on the states i, j  E1 with 
initial distribution p {X0 = i) = pi, and transition 
probabilities  
P {Xn+1 = j / Xn = i} = pij   i, j  E1                 ... (1) 
     Assume that the TPM P = (pij) is irreducible and a 
periodic throughout the discussions to follow. 
     Let (S =) Y0, Y1, Y2 ... represent the inventory levels 
just after meeting the demands at T0, T1, T2, ..., so that 
time intervals between successive occurrences of bulk 
demands induce the triple sequence process {(X, Y), T} = 
{(Xn, Yn), Tn ; n  N} as a Markov Renewal inventory 
Process (MRIP) on the state space E with the Semi-
Markov kernel Q(t) = [{Q(i, I), (j, J) ; t}] where Q {(i, I), 
(j, J) ; t)} = P[{(Xn+1 = j, Yn+1 = J) ; Tn+1 – Tn  t} / (Xn = i, 
yn = I)] = P(i, I), (j, J) . G(t) the TPM of the underlying (X, 

Y) double sequence MC is given by Q() = Q  ((i, I), (j, 

J)) (say) 

Stationary Distribution of the (X, Y) MC 

     Let the stationary probability vector of the (X, Y) MC 
denoted by the row vector  = {(i, j)} for i = 1, 2, ..., a, j = 
s + 1, s +2, ...., S – a, i – 1, 2, ..., n, j = S – n ; n = a – 1, a 
– 2, ..., 1  and   

    i = 1, 2, ..., a ; j  = S                        ...(3) 

     Here the subscripts of  are ordered as in the E set. If e 
= (1, 1, ..., 1) denotes a column vector of unities then the 

stationary equations Q  = , e = 1 have unique 

solution vector as the state space E is finite dimensional 
and  is irreducible,  simple computational method (SCM) 
is capsuled below as an algorithm. 

Step - I 
     Using the TPM P = (Pij), i, j  E1, obtain its stationary 
probability vector, say  = (1, 2, ..., a) by solving p = 
, e = 1 
Step – II 
     Arrange the states as they are ordered in the set E of 

section 1.1 and identify the TPM Q  of the (X, Y) MC in 

terms of Pij’s and zeros. 
Step – III 
     Omit the last set of ‘a’ equations co-responding to (j, 

S), j = 1, 2, ... a, from  = Q . Then select the 

remaining stationary equations together with 
2Ej

   (i, j) 

= i so that the resulting independent set of simultaneous 
equations are solvable. 
 

Step – IV 
     Make suitable changes such that one set of ‘a’ 
equations corresponding to (1, S-1) , (2, S-2), ..., (a, S-a) 

appearing on the left of the system  = Q  reduce to a 

system of ‘a’ equations of the form  = ((1, S-1), (2, S-2), .... 
(a, S-a)) A, where A is a full rank square matrix of order of 
‘a’. Hence obtain values for (1, S-1), (2, S-2), ..., (a, S-a) by 
any one of the standard methods. 
Step – V 
     Using the values of (1, S-1), (2, S-2), ..., (a, S-a) and 
selecting expressions for (1, S-2), (2, S-3), ..., (a-1, S-a) and 
(a, S-a-1), compute the next set of ‘a’ components in the 

solution of  = Q . Continue it, until values for all 

components (i, j), (i, j)  E of the  vector are obtained. A 
special case of obtaining the  vector is explained for the 
specific values (S = 2, S = 7), (S = 2, S = 6), (S = 2, S = 5) 
in appendices – I(a), II(a), III(a) respectively. 
Mean Sojurn Times 
 

     For the MRIP {(X, Y), T}, let the mean sojourn time at 
state (i, j)  E be (i, j). Since the inter occurrence times 
between transition epochs are assumed to be i.i.d. random 
variables, with df G (.), it is seen that 

(i,j) = 


0
[1 – G(t)] dt =  

Inventory Level Process {I(t)} 

    Since I(t) gives the onhand stock level at time ‘t’, i.e. I(t) 
= Yn for Tn  t < Tn+1, it is seen that {I(t) ; t  0} is a 
Semi-Markov Process on the state space E2 with kernel Q. 
Let P[I(t) = n / Y0 = i]. Then by the application of Key-

renewal theorem, it can be established that Lim
t 

 p(n, i ; 

t) = P(n) exists. Thus using the results of (4), it can be 
shown that for i  E1. 

P(n) = 
),(

1),1(),1(),1(

),(),(
1

1

nj

a

jkk
E

k

njnj

a

j 













   

                              ... (5a) 

where n = S + 1, S + 2, ..., S – a and n = S 

P(n) = 
),(

1
),1(),1(),1(

),(),(
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where n = S – a + 1, S – a + 2, ..., S – 1 

Expected Total Costs 

     In this type of [(S, S), a, p] inventory situations, 
demand cum replenishment epochs play a very crucial 
role in obtaining cost expressions. Hence, to study the 
characteristics of the time durations of the successive 
replenishment epochs, consider any two consecutive 
demand cum replenishment epochs Wn and Wn+1, n  N 
under steady state conditions. Assume that an i-type 
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demand occurs at Wn while a j-type demand takes place at 
Wn+1. Let it be called as j-cycle. 
    Further, assume that ‘M’ denotes the quantity of 
replenishment at Wn+1, ‘Z = (Wn+1 – Wn)’ denotes the 
random length of the cycle between the epochs Wn and 
Wn+1 and K denotes the random number of demand 
epochs in it, with the k-th one being the last demand 
epoch of the cycle i.e at Wn+1. 
     Then materialization of the events (M=m), (K = k) and 
Z  (z, z + dz) implies that m  E3, k  E5 (r) and z  [0, 
). Hence for a given i, j  E1, expression for the joint 
p.d.f., subject to  

i. S1 = Sum of the demands of the first (k-1) 
demands in the j-cycle is strictly less than 
(S-s), 

ii. S2 = Sum of the demands of all k-demand 
epochs is equal to m and 

iii. z  Z  z + dz is to take the following form 

fi, j (m, k ; z) dz = dzzgppp
B

k

iiiiii kk
)(...,,,

1 *

,, 12,11 
  

where  i, i1, i2, ...., ik  E1,  S1 < (S – s) 
  S2 = m, m  E3, k  E5 
and B is the normalizing constant and ik = j. 
     From (6) with little effort, one could obtain the 
marginal distribution for M, K and Z. The joint probability 
function (pf) of M and K is sufficient to derive the cost 
per transition and is given by 

jiiiiij k
ppp

B
kmf ,,, 1211

...,,,
1

),(


  

                                                                          ... (7) 

i, i1, i2, ..., ik  E1, S1 < S – s and S2 = m, m  E3, k  E5 

since ik = j. For the constructional details of (.)
j

f  refer 

appendices I(b), II(b), III(b) for some specific cases. 
Marginal Distributions in a j-cycle 

    Let the marginal probability functions of quantity of 
replenishment M, number of transitions K in a j-cycle be 

respectively designated by 
)1(

)(mj
f  and 

)1(

)(kj
f . 

Thus 

)1(

)(mj
f  =

 
1;),(

5

Ejkmf j
EK




  

)2(

)(kj
f  =

 1;),(
5

Ejkmf j
EK




 

Further let 

fj
* = probability that a cycle is terminated by a j-demand. 

    = ),(
53

kmf j
EkEm



  

     Hence, the following are the conditional expected 
values of the random variables (M/K), K and M in the j-
cycle. 

Ej ),(
53

kmf
k

m

K

M
jEjEm 



















 

                                                                        ... (8a) 

Ej(K)     =  )()2(

5

kfk j
EK



   

            ... (8b) 

Ej (M)    = )()1(

5

mfm j
EK



  

Average Inventory Per Transition 
     In a j-cycle, choose a demand epoch Tn at random. Let 
(j, i)  E be the state of the (Xn, Yn) process at Tn. The 
inventory level during the transition interval (Tn  - Tn-1) is 
(j + i), if i = S and it is equal to [S – M + j] if i = S. 
Further, let I+ = I(Tn

+) be the inventory level just after the 
demand epoch Tn. Hence the conditional expected 
inventory level during the interval (Tn – Tn-1), given that 
(Xn, Yn) = (j, 1) is given by 

Ej (I
+) = 

 )( Si

 (j + 1) 
),(),( ])([

2

Sjjij jMES
Ei

 


                                                                                          ... (9) 

Cost Aspects 
Consider the cost considerations for a j-cycle as  

Hj the unit storage cost per transition 
Lj fixed ordering cost 
Cj unit variable cost 

Then the conditional expected total ‘cost per 
transition (TCT) in a j-cycle is given by 

Ej (TCT) = sayTIEH
K

M
EC

kE

L
jjjjj

j

j
,)(

)(









 

                                                                     ... (10a) 

Thus the expected total cost per transition in any cycle is 
given by  

E(TCT) = 
*

3

jj
Ej

fT


                                                         .. (10b) 

Expected Long Run Cost Per Unit Time 

    For a given j  E1, the expected long run total cost (TC) 
per unit time in a j-cycle is given by 

Ej (TC) = )()/(
)(

IEhZMEC
zE

L
jjj

j

j  ... (11a) 

Thus 

E(TC)  = 
jj

a

j

fTCE )(
1



                                          ... (11b) 
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where E(I) = 
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Ej (z) = dzzkmfz
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Optimization Problems 
     The best policies under two different contexts are 
worked out assuming specific values for the parameters 
involved. These are supported by numerical illustrations. 
Example 1 
     It is assumed that a retailer keeps stock pile according 
to the [(S, S), a, p] system. The best policy given the 
values s = 2, a = 2, p11 = .3, p21 = .4, L1 = 150, L2 = 200, 
C1 = C2 = 50, H1 = H2 = 10 when S = 5, 6 and 7 is 
determined by using the calculations of tables 1(a), 1(b) 
and 1(c) given below which are outlined in expressions (1) 

– (10) and appendices (I) through (III). Let p0 = 









6.4.

7.3.
 

     The resulting calculation of E(TCT) for three values 5, 
6, 7 of S is given in Table 1(c) which indicates that the 
over all minimum E(TCT) corresponds to S = 7. Hence 
[(2, 7), 2, p0] is the most desirable policy, among the 
above three [(2, S), 2, p0], S = 7, 6, 5 policies. 
Example 2 
     It is assumed that the demand for the product is 
seasonal according to three different TPM’s obtained on 
the basis of the historical data. Now the problem is to 
identify the season which has the minimum E(TCT). For 
demonstration, [(2, 7), 2, P) policy is again investigated at 
three different seasons I, II and III respectively with                

 

 

 

 

 

 

 

 

 

 

 

P = P1 = 








6.4.

7.3.
, P = P2 = 









5.5.

5.5.
, P = P3 = 










6.4.

1.9.
. Further, placing S = 2, a = 2, L1 = 100, L2 = 

150, C1 = C2 = 35, H1 = H2 = 8 the corresponding results 
are computed, as reported in Table – 2. 

     From table 2, it may be observed that the best season 
(*) corresponds to the P matrix which yields the highest 1 
value. It may be due to the fact that the number of 
transition in a cycle increases with increasing 1 values 
and this may minimize the E(TCT) = [Lj / Ej (K) + Cj Ej 
(M/K) + Hj Ej (I

+)] fj
* because number of transitions ‘K’ in 

a ‘j’ cycle appears in the denominator of the first two 
terms in the above E(TCT) expression. 
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Table 1(c) 

E (TCT) values for [(s, S), a, p] = [(2, S), 2, p0] models when  
S = 5, 6, 7 

S j j Lj/Ej (k) Cj Ej 
(M/K) 

Hj Ej 
(I) 

Tj f*
j
 Tj fj

* E(TCT) 

 1 .36 244.10 21.08 17.83 283.01 .29 82.07  
5         242.72 
 2 .64 134.18 62.26 29.83 226.27 .71 160.65  
 1 .36 265.02 12.21 19.45 296.68 .19 56.37  
6         219.46 
 2 .64 96.36 72.69 32.29 201.34 .81 163.09  
* 1 .36 184.89 9.15 21.53 215.57 .24 51.74  
7         165.09 
 2 .64 80.65 32.57 35.93 149.15 .76 113.35  

 
Table – 2 

E (TEC) values for [(2, 7), a, p] = [(2, 7), 2, p] model when p varies 
 

S j j Lj / Ej 
(K) 

Cj Ej 
(M/K) 

Hj Ej 

(I) 
Tj fj Tj fj E 

(TCT) 
I* 1 .36 123.26 12.80 17.22 153.28 .24 36.79  
         139.2 
 2 .64 60.49 45.60 28.74 134.83 .76 102.47  
 1 .50 78.03 16.59 22.99 117.61 .34 39.99  
II         123.4 
 2 .50 65.81 37.24 23.47 126.52 .66 83.50  
 1 .80 33.06 26.81 35.20 95.07 .67 63.70  
III*         115.0 
 2 .20 126.47 18.83 10.27 155.57 .33 51.34  
 

******* 


