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ARTICLE INFO                                          ABSTRACT 
 

 
 

 

The steady flow of through a catheterized tapered artery with a stenosis is analyzed, assuming the blood as a non-
Newtonian Herschel-Bulkley fluid. A system of non linear partial differential equations for blood flow of the 
artery was obtained. The governing equations are solved using calculus method. The width of the plug flow region 
increases with the increase of the yield stress, and the reverse behavior is noticed when the steady state pressure 
gradient increases when all the other parameters are kept fixed. It is observed that the velocity and flow rate 
decrease while the wall shear stress and resistance to flow increase when the yield stress or catheter radius ratio or 
angle of tapering increases while all the other parameters held fixed.   
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INTRODUCTION  
 

The study of blood flow through an inserted catheter has been the subject of scientific research for a long time. Its plays an important role in the 
fundamental understanding, diagnosis and treatment of cardiovascular system. Like most of the problem of nature and life sciences. It is complex 
one due to the complicated structure of blood, the circulatory system and their constituent materials. The experimental studies and the theoretical 
treatment of blood flow phenomena are very useful for the diagnosis of a number of cardiovascular diseases and development of pathological 
patterns in human or animal physiology and for other clinical purposes and practical applications (Srivastava and Srivastava 1983). Blood is 
composed of fluid plasma and formed elements. The formed elements of blood are erythrocyte, leukocyte and platelets. The percentage volume 
of red cells is called the haematocrit and is approximately 40- 45 % (Oka, 1973) for an adult. Red cells may affect the viscosity of whole blood 
considered as homogenous fluid. In general, Blood is known to be an incompressible non-Newtonian Fluid. This property is mainly the result of 
cell concentration (Demiray 2003). However in the course of flow in arteries, the red blood cells in the vicinity of arterial wall move to the 
central region of the artery. So that the haematocrit ratio becomes quite low near the arterial wall, which results in lower viscosity in this region. 
A catheter is made of polyester based thermoplastic polyurethane, medical grade polyvinyl chloride etc. For the purpose of flexibility PVC 
materials containing added plasticizers are used in catheter which enables them to move through the branches or curved paths of the circulatory 
system. Transducers attached to catheters are of large usage in clinical works and the techniques are used for measuring blood pressure or other 
mechanical properties in arteries (Anderson et al., 1986). In all the investigation blood has treated as a Newtonian fluid. Recently, Sankar and 
Hemlatha (2006-2007) addressed the problem of pulsatile flow of Hershel-Bulkey fluid in catheterized arteries. Dash et.al. (1999) studied the 
changed flow pattern in narrow artery when a catheter is inserted into it and estimate the increase in friction in the artery due to catheterization 
using Casson fluid model for steady and pulsatile flow of blood. 
 

Formulation of the Mathematical model 
 

Consider an axially symmetric, laminar steady and fully developed flow of blood assumed to be incompressible in the axial direction ( )z  
through a circular rigid tapered artery in which an axially symmetric mild stenosis.  A catheter is introduced coaxially, where the artery is 

modelled as a constricted tapered circular tube of radius R and the catheter radius is taken to be K R (0<K<1). It is assumed that the blood is 
modelled as a single fluid model with as a non-Newtonian Herschel-Bulkley fluid. The tapered vessel segment having an axially symmetric 
stenosis with catheter is mathematically modelled as a rigid tube with a circular section and a catheter is coaxial to it.  We have used the 

cylindrical polar co-ordinates ( , , )r z  where r and z denote the radial and axial co-ordinates and  is the azimuthal angle. The radial 

velocity is negligibly small in magnitude and may be neglected for low Reynolds number flow and the pressure gradient is a function of z alone. 
The study have been considered on catheterized tapered artery with mild stenosis the proposed momentum equation of the flow is as follows 
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dp d r
dz r dr

 
  
in   ( )K R r R z                                       (1) 

 

where p denotes the pressure, H  denote the shear stress of the Herschel – Bulkley  fluid and R  is the radius of the of the normal artery 

respectively.  R z is the radius of the tapered artery in the stenosed region. 

 
The proposed constitutive equations of the fluid motion in the core region (Herschel – Bulkley fluid) are given by 
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where Hu  is the axial component of  fluid’s velocity, H  is the viscosity of the Herschel – Bulkley fluid. y is the yield stress, 1 and 2
are the yield planes bounding of the plug flow region, n is the power law index. From equation (4) it is clear that the velocity gradient vanishes in 

the region where the shear stress is less than the yield stress which implies a plug flow whenever H ≤ y . However, the fluid behavior is 

indicated whenever H ≥ y . 
The equivalent form of the constitutive equations form (2) - (3) when the shear stress and strain rate have opposite 

signs and when yH   can be written as     
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The equations in (4) and (5) constitute a non-linear coupled implicit system of differential equations governing the time-independent one 
dimensional shear flow of a Herschel – Bulkley fluid. These are to be solved subject to appropriate boundary conditions. It is assumed that the 
time elapsed from the start of motion is large enough to ignore the initial and transient effects. Then the boundary conditions are appropriate for 
the problem under study is the no slip condition at both the walls, that is, 
 

0Hu      at   r K R    and  
 

0Hu      at  ( )r R z                                                                                                                                   (7)  
 
The geometry of the constricted tapered stenosed artery is mathematically modelled as  
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where ( )R z  is the radius of the tapered artery in stenosed region,    is the angle of  tapering, H  is the maximum projection of  the 

stenosis, H Cos  is the length of the stenosis at a length d  for the tapered artery in the stenotic region, 2 0z   is the length of the stenosis and 

m(= tan  ) represents the slope  of  the tapered vessel, R  is the constant radius of the normal artery. 
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Geometry of Single layered catheterized tapered artery with stenosis 

 
Let us introduce the following non-dimensional variables, 
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where 
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 and 0p
 
is the absolute magnitude of the typical pressure gradient, y is the non-dimensional yield stress. 

Since the flow is assumed as steady, the pressure gradient can be written as  
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where P is the non-dimensional steady state pressure gradient. 
 
The geometry of the stenosis (in the dimensionless form) for the constricted tapered artery is mathematically modelled as  
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Using equations (9) and (10), the momentum equation in (1) is reduced to  
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Similarly, using equations (9) and (10), the constitutive equations (4) - (6) are simplified, respectively to 
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The boundary conditions in the non-dimensional form are (no-slip) 
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Integrating equation (13), we get  
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where c1 is the constant of integration. 
 
From equations (13) to (15), it is clear that the flow in ( )K r R z   is a three region one, in which the core region has a flat velocity profile 
and hence forms the plug flow region.In this plug flow region, where the shear stress does not exceed the yield stress, the fluid itself does not 
flow but is merely carried along by the fluid in the two adjacent viscous flow regions. For mathematical representation, the plug flow region can 
be defined as 1 2r   , where 1K    and 2 ( )R z  .  
 
Here, 1  and 2  are unknown constants to be determined. 
From the continuity of the shear stress along the boundary of the plug flow region, 
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By substituting equation (17) in equation (19), we get 
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By substituting equation (21) in equation (18), the shear stress of the Herschel-Bulkley fluid is given by  
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where     is  the width of the plug core region.  
 

Let us consider the fluid velocity as * ** ***, ,H H Hu u u for the regions corresponding to
 1K r   ,  1 2r  

  and
   2 r R z  

 
respectively. The expressions for the velocity in the three regions can be obtained from the (13) to (15), 
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Using H H   at 1r   and using equations (20) and (23) in equation (24), 
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Integrating equation (25) from K to r with the help of the boundary conditions in equation (16), we get the initial approximation to the velocity  

Hu 
 in the region 1K r     as   
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where   pu  is a  constant   and pu denotes the plug flow velocity. 

 
The initial approximation to the plug flow velocity pu  in the region 1 2r  
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Using H H   and using equations (23) and (26) in equation (15) and then integrating from r to R(z), the initial approximation to the velocity 
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By the continuity of the velocity distribution throughout the flow field, we have the condition that     
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Hu  are fluid velocity distribution in the region 1K r   and 2 ( )r R z    respectively 
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By substituting the value of 2  and 2  in the equation (30), we get 
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The integrals are evaluated as 
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 By substituting value of the integrals, we get 
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From the above  newly proposed equations the plug flow region boundary value for 1  can be found using the Regula-falsi method and the 

using the relation in equation (23) the value 2 can be found. The single Herschel-Bulkley fluid model steady flow rate is given by 
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The steady flow rate is obtained as
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By using equation (30) in (50), we get 
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The integrals are evaluated as 
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By substituting value of the integrals, we get 
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The wall shear stress in the artery can be obtained by____ 
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The frictional resistance per unit length of the artery is given by 
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RESULTS AND DISCUSSIONS 
 
The aim of the present study is to discuss the effects of characteristics of steady flow of blood through a catheterized tapered artery. In particular, 
the effects of catheterization, non-Newtonian nature of the blood, plug flow velocity, flow rate, wall shear stress and frictional resistance have 

been discussed. Though the range of the yield stress y   for blood of normal subject is 0.01–0.06 dyn/s2, the non-Newtonian effects are more 

pronounced when the value of the yield stress increases. The range 0.0 – 0.25 is used to pronounce the effects of the non-dimensional yield stress 

y , since this range is more suitable for all vessels through which a catheter is inserted. The value of the catheter radius ratio K has been taken in 

the range 0.1–0.3 to accommodate all the types of catheters. The steady pressure gradient P value is usually taken as 1.0. Here it is taken as P = 
1.0 – 3.0. The value of the angle of tapering   has been taken in the range 0.01 – 0.05.  
 
Yield Plane Locations 
 
The effect of finite yield stress is that the fluid exhibits solid-like behavior or plug flow in regions where the shear stress is less than the yield 
stress. The location of a point where the shear stress is equal to the yield stress is called a yield point and the locus of such points is called yield 
surface or yield plane. In the case of a tube flow, there is only one yield plane, whereas for annular flow there are two yield planes 1r   and 

2r  and these two yield planes form the boundary of the plug flow region. It is noted that 2 1( )     is the width of the plug plug flow 
region. For steady flow, the yield plane locations do not change during the course of motion, but they change with respect to the other 
parameters.  
 

Table 1.  Yield plane values for the single fluid model for the various pressure gradients 
 

 

Yield stress y  
Yield plane values for Single fluid HB 

For P=1 λ1 For P=1 λ2 For P=2 λ1 For P=2 λ2 For P=3 λ1 For P=3 λ2 
0.1 0.55 0.65 0.56 0.61 0.585 0.618333 
0.15 0.53 0.68 0.55 0.625 0.575 0.625 
0.2 0.5 0.7 0.54 0.64 0.565 0.631667 

P-Pressure gradient, y  - yield stress,  λ1, λ2 – Boundary layers of Plug flow regions. 
 

The width of the plug flow region increases with the increase of the yield stress, and the reverse behavior is noticed when the steady state 
pressure gradient increases when all the other parameters are kept fixed. 
 
Plug Flow Velocity  
 

Table 2. Plug flow velocity up for the various pressure gradient P and catheter radius ratio K 
 

Yield stress y  
 

Single fluid HB model Plug flow velocity (up) 
P=1,K=0.1 P=1,K=0.3 P=2,K=0.1 P=2,K=0.3 P=3,K=0.1 P=3,K=0.3 

0.1 0.41488 0.09159 0.81506 0.20003 1.31435 0.33771 
0.15 0.39890 0.08091 0.84210 0.19634 1.29395 0.32715 
0.2 0.39788 0.07722 0.80971 0.19510 1.21565 0.29343 
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It is found that the plug flow velocity decreases slowly with the increase of the yield stress. It is also noted that the plug flow velocity decreases 
significantly with the increase of the catheter radius ratio K when all the other parameters kept constant. 
 
Wall Shear Stress  
 
The variation of wall shear stress with the catheter radius ratio for the single fluid model and yield stress with P = 1, 2 and 3 has been calculated. 
It is found that the plug flow velocity increases with the increase of the yield stress. It is also noted that the plug flow velocity increases 
significantly with the increase of the catheter radius ratio K when all the other parameters kept constant. 
 

Table 3. Wall shear stress τw for the single fluid model for various Pressure gradients P and Yield stress y  
 

Yield stress y  HB Single fluid Wall shear stress τw 

For P=1,K=0.1 For P=2,K=0.2 For P=3,K=0.3 
0.1 0.269303 0.578077 0.802608 
0.15 0.27317 0.583011 0.812008 
0.2 0.283171 0.588745 0.821942 

 
Flow Rate 

 

Figure 1: Flow rate for the variation of pressure gradient for different Yield stress with n=0.95 
 

 
 

Figure 2: Flow rate for the variation of angle of tapering with pressure gradient for different Catheter radius ratio K with n=0.95 
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Figure 1 and 2 shows the variation of flow rate with catheter radius ratio for different values of angle of tapering   and pressure gradient  P 

with  n= 0.95, y =0.2  at axial distance z = 0. It is clear that the flow rate decreases slowly with the increase of the catheter radius ratio K. 

Furthermore the increasing values of the angle of tapering , the flow rate decreases. There is increase in the values of the flow rate with the 
increase of the pressure gradient when the other parameters are kept constant.  
 
Frictional Resistance 
 

 

Figure 3: Frictional resistance for the variation of pressure gradient for different Yield stress with n=0.95 
 
Figure 3 shows the variation of frictional resistance with yield stress for different values of pressure gradient  P with  n= 0.95, K=0.1  at axial 
distance z = 0. There is decrease in the values of the frictional resistance with the increase of the pressure gradient when the other parameters are 
kept constant. 
 

 

Figure 4: Frictional resistance for the variation of angle of tapering with pressure gradient for  
different Catheter radius ratio K with n=0.95 

 
Figure 4 shows the variation of frictional resistance with catheter radius ratio K for different values of angle of tapering   and pressure gradient  
P with  n= 0.95, y =0.15  at axial distance z = 0. It is clear that the frictional resistance increases with the increase of the catheter radius ratio K. 

Furthermore the increasing values of the angle of tapering , the frictional resistance increases. There is decrease in the values of the frictional 
resistance with the increase of the pressure gradient when the other parameters are kept constant. 
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Conclusion and Future study 
 
The blood flow through a catheterized tapered artery has been mathematically modeled. The width of the plug flow region increases with the 
increase of the yield stress, and the reverse behavior is noticed when the steady state pressure gradient increases when all the other parameters are 
kept fixed. It is observed that the plug flow velocity and flow rate decrease while the wall shear stress and resistance to flow increase when the 
yield stress or catheter radius ratio or angle of tapering increases while all the other parameters held fixed.  By using the present model, 
physicians can be more accurate in predicting the post- catheterization flow quantities so that they can plan and analyze a suitable treatment 
before entering the operation.   Hence, in view of the above discussion, it is concluded that the present analysis is believed to yield some good 
improvement in the studies of blood flow through catheterized arteries. An extension of this study to the pulsatile flow would be more interesting 
and may explain the more realistic situation of the blood flow.  Further, the inclusion of the elastic nature of the blood vessels in the study will 
have more applicability to the medical field. 
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