RESEARCH ARTICLE

ON THE QUINTIC EQUATION WITH FIVE UNKNOWNS $\left[x^{3}-y^{3}=z^{3}-w^{3}+6 t^{5}\right]$

*Vidhyalakshmi, S., Kavitha, A., Premalatha, E. and Gopalan, M. A.

Department of Mathematics, Shrimathi Indira Gandhi College, Trichy-620002

ARTICLE INFO

Article History:

Received $26^{\text {th }}$ March, 2013
Received in revised form
$10^{\text {th }}$ April, 2013
Accepted $29^{\text {th }}$ May, 2013
Published online $15^{\text {th }}$ June, 2013

Key words:

Quintic equation with five unknowns,
Integral solutions.
MSC 2000 Mathematics subject
classification: 11D41.

Abstract

We obtain infinitely many non-zero integer quintuples (x, y, z, w, t) satisfying the Quintic Equation with five unknowns $x^{3}-y^{3}=z^{3}-w^{3}+6 t^{5}$.Various interesting properties between the values of x, y, z, w, t and special polygonal and pyramidal numbers are presented.

INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, Quintic equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity [1-3]. For illustration, one may refer [4-6] for Quintic equation with three unknowns, [7] for Quintic with four unknowns and [8-10] for Quintic equation with five unknowns. This paper concerns with the problem of determining non-trivial integral solutions of the non-homogeneous Quintic equation with five unknowns given by $x^{3}-y^{3}=z^{3}-w^{3}+6 t^{5}$.A few relations among the solutions are presented.

METHOD OF ANALYS

The Quintic Diophantine Equation with five unknowns to be solved for its non zero distinct integral solutions is

$$
x^{3}-y^{3}=z^{3}-w^{3}+6 t^{5}
$$

Different patterns of solutions of (1) are presented below.

Pattern I:

Introduction of the transformations

$$
\begin{aligned}
& x=c+1, y=c-1 \\
& z=a+1, w=a-1
\end{aligned}
$$

in (1) leads to $c^{2}=a^{2}+t^{5}$
Case: i
Let $(c+a)=A^{4} \quad(c-a)=A$
Hence, the corresponding solutions of (1) are

[^0]\[

$$
\begin{aligned}
& x(A)=\frac{1}{2}\left(A^{4}+A+2\right) \\
& y(A)=\frac{1}{2}\left(A^{4}+A-2\right) \\
& z(A)=\frac{1}{2}\left(A^{4}-A+2\right) \\
& w(A)=\frac{1}{2}\left(A^{4}-A-2\right) \\
& t(A)=A
\end{aligned}
$$
\]

x, y, z, w and t are integers, for all values of A.

Properties:

- $\quad x(A)-y(A)+z(A)-w(A) \equiv 0(\bmod 4)$
- $2(x(A)-z(A))={ }^{1} g n_{A}+1$
- $y(A(A+1))-w(A(A+1))=x(A(A+1))-z(A(A+1))=\operatorname{Pr}_{A}$

Each of the following expressions represents a Nasty number.
a) $3\{x(A)+y(A)+z(A)+w(A)\}$
b) $6\{y(A)+w(A)+2\}$
c) $6\{x(A)+z(A)-2\}_{(2)}$
d) $6\{x(A)+w(A)\}$
e) $6\{y(A)+z(A)\}$

- $\quad z(A)+w(A)+t(A)$ is a Biquadratic integer.

Case: ii

Take $(c+a)=A^{3} \quad(c-a)=A^{2}$
Hence, the corresponding integer solutions of (1) are

$$
\begin{aligned}
& x(A)=\frac{1}{2}\left(A^{3}+A^{2}+2\right) \\
& y(A)=\frac{1}{2}\left(A^{3}+A^{2}-2\right) \\
& z(A)=\frac{1}{2}\left(A^{3}-A^{2}+2\right) \\
& w(A)=\frac{1}{2}\left(A^{3}-A^{2}-2\right) \\
& t(A)=A
\end{aligned}
$$

Properties:

- $\quad x(A)+y(A)=2 P_{A}^{5}$
- $\quad x(A)+y(A)+z(A)+w(A)-t(A)=S O_{A}$
- $\quad x(A)=c t_{A, A}$

Each of the following expressions represents a Nasty number.
a) $6\{y(A)-w(A)\}$
b) $6\{x(A)-z(A)\}$
c) $3\{x(A)+y(A)-z(A)-w(A)\}$

Each of the following expressions represents a Cubical integer.

- $\quad y(A)+z(A)$
- $\quad x(A)+w(A)$

Case: iii

Let $(c+a)=A^{5} \quad(c-a)=1$
Hence, the corresponding solutions of (1) are

$$
\begin{aligned}
& x(A)=\frac{1}{2}\left(A^{5}+3\right) \\
& y(A)=\frac{1}{2}\left(A^{5}-1\right) \\
& z(A)=\frac{1}{2}\left(A^{5}+1\right) \\
& w(A)=\frac{1}{2}\left(A^{5}-3\right) \\
& t(A)=A
\end{aligned}
$$

As our aim is on finding integer solutions, it is seen that the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ and t are integers only when A is odd. ie $A=2 k+1$.Thus, the corresponding solutions of (1) are

$$
\begin{aligned}
& x(k)=16 k^{5}+40 k^{4}+40 k^{3}+20 k^{2}+5 k+2 \\
& x(k)=16 k^{5}+40 k^{4}+40 k^{3}+20 k^{2}+5 k \\
& x(k)=16 k^{5}+40 k^{4}+40 k^{3}+20 k^{2}+5 k+1 \\
& x(k)=16 k^{5}+40 k^{4}+40 k^{3}+20 k^{2}+5 k-1 \\
& t(k)=2 k+1
\end{aligned}
$$

Properties:

- $\quad x(A)-y(A)+z(A)+w(A)+t(A) \equiv 4(\bmod A)$
- $\quad x(A)-y(A)+w(A)-z(A)=0$

Each of the following expressions represents a Nasty number.
a) $6\{x(A)-y(A)\}$
b) $6\{x(A)-y(A)+z(A)-w(A)\}$

- $\quad 2\{x(A)-y(A)-z(A)-w(A)$ is a cubical integer.
- $\quad 16\{x(A)+y(A)+w(A)+z(A)\}$ is a quintic integer.

PATTERN II:

Introduction of another transformations

$$
\begin{array}{ll}
x=u+v & w=u-v \\
y=u+p & z=u-p
\end{array} \quad t=k u
$$

in (1) leads to $v^{2}=p^{2}+k^{5} u^{4}$

Case: i

Let $(v+p)=k^{5} A^{4} \quad(v-p)=1$
Hence, the corresponding solutions of (1) are

$$
\begin{aligned}
& x(A)=\frac{1}{2}\left(2 A+k^{5} A^{4}+1\right) \\
& y(A)=\frac{1}{2}\left(2 A+k^{5} A^{4}-1\right) \\
& z(A)=\frac{1}{2}\left(2 A-k^{5} A^{4}+1\right) \\
& w(A)=\frac{1}{2}\left(2 A-k^{5} A^{4}-1\right) \\
& t(A)=k A
\end{aligned}
$$

The quintuple ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}, \mathrm{t}$) is an integer, when both A and k are odd.

Case: ii

Let $(v+p)=k^{5} A^{3} \quad(v-p)=A$
Hence, the corresponding solutions of (1) are

$$
\begin{aligned}
& x(A)=\frac{1}{2}\left(3 A+k^{5} A^{3}\right) \\
& y(A)=\frac{1}{2}\left(A+k^{5} A^{3}\right) \\
& z(A)=\frac{1}{2}\left(3 A-k^{5} A^{3}\right) \\
& w(A)=\frac{1}{2}\left(A-k^{5} A^{3}\right) \\
& t(A)=k A
\end{aligned}
$$

The quintuple ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}, \mathrm{t}$) is an integer, when both A and k are odd.

Case: iii

Consider $(v+p)=k^{5} A^{2} \quad(v-p)=A^{2}$
Hence, the corresponding solutions of (1) are

$$
\begin{aligned}
& x(A)=\frac{1}{2}\left(2 A+A^{2}\left(k^{5}+1\right)\right) \\
& y(A)=\frac{1}{2}\left(2 A+A^{2}\left(k^{5}-1\right)\right) \\
& z(A)=\frac{1}{2}\left(2 A+A^{2}\left(1-k^{5}\right)\right) \\
& w(A)=\frac{1}{2}\left(2 A-A^{2}\left(k^{5}+1\right)\right) \\
& t(A)=k A
\end{aligned}
$$

The quintuple (x, y, z, w, t) is an integer, when k is odd.

Case: iv

Take $(v+p)=A^{4} \quad(v-p)=k^{5}$
Hence, the corresponding solutions of (1) are
$x(A)=\frac{1}{2}\left(2 A+A^{4}+k^{5}\right)$
$y(A)=\frac{1}{2}\left(2 A+A^{4}-k^{5}\right)$
$z(A)=\frac{1}{2}\left(2 A-A^{4}+k^{5}\right)$
$w(A)=\frac{1}{2}\left(2 A-A^{4}-k^{5}\right)$
$t(A)=k A$
The values of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ and t are integers, when both A and k are of the same parity.

Case: v

Assume $(v+p)=k^{3} A^{2} \quad(v-p)=k^{2} A^{2}$
Thus, the corresponding solutions of (1) are

$$
\begin{aligned}
& x(A)=\frac{1}{2}\left(2 A+A^{2}\left(k^{3}+k^{2}\right)\right) \\
& y(A)=\frac{1}{2}\left(2 A+A^{2}\left(k^{3}-k^{2}\right)\right) \\
& z(A)=\frac{1}{2}\left(2 A+A^{2}\left(k^{2}-k^{3}\right)\right) \\
& w(A)=\frac{1}{2}\left(2 A-A^{2}\left(k^{3}+k^{2}\right)\right) \\
& t(A)=k A
\end{aligned}
$$

The values of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ and t) are integer, when A is even.

PATTERN III:

When $\mathrm{k} \neq$ a perfect square
(3) is of the form $z^{2}=D x^{2}+y^{2}$

Hence the solutions of (3) is
$u^{2}=2 r s$
$v=k^{5} r^{2}+s^{2}$
$p=k^{5} r^{2}-s^{2}$
Our interest is on finding integer solutions, so take $r=2^{2 \alpha-1} s$.
Hence, the corresponding nonzero distinct integral solutions of (1) are given by
$x=2^{\alpha} s+\left(k^{5} 2^{4 \alpha-2}+1\right) s^{2}$
$y=2^{\alpha} s+\left(k^{5} 2^{4 \alpha-2}-1\right) s^{2}$
$z=2^{\alpha} s-\left(k^{5} 2^{4 \alpha-2}-1\right) s^{2}$
$w=2^{\alpha} s-\left(k^{5} 2^{4 \alpha-2}+1\right) s^{2}$
$t=k 2^{\alpha} s$
If $k=\alpha^{2}$, (3) leads to $v^{2}=p^{2}+\left(\alpha^{5} u^{2}\right)^{2}{ }_{(4)}$
which is satisfied by
$\alpha^{5} u^{2}=2 r s$
$v=r^{2}+s^{2}, r>s>0$
$p=r^{2}-s^{2}$
Let as assume that $r=2^{2 \beta-1} \alpha^{5} R^{2} s$
Then (5) becomes
$u=2^{\beta} R s$
$p=\left(2^{4 \beta-2} \alpha^{10} R^{4}-1\right) s^{2}$
$v=\left(2^{4 \beta-2} \alpha^{10} R^{4}+1\right) s^{2}$

Hence the corresponding solutions of (1) is
$x=2^{\beta} R s+\left(2^{4 \beta-2} \alpha^{10} R^{4}+1\right) s^{2}$
$y=2^{\beta} R s+\left(2^{4 \beta-2} \alpha^{10} R^{4}-1\right) s^{2}$
$z=2^{\beta} R s-\left(2^{4 \beta-2} \alpha^{10} R^{4}-1\right) s^{2}$
$w=2^{\beta} R s-\left(2^{4 \beta-2} \alpha^{10} R^{4}+1\right) s^{2}$
$t=\alpha^{2} 2^{\beta} R s$
Also, the solutions of (4) are
$\alpha^{5} u^{2}=r^{2}-s^{2}$
$v=r^{2}+s^{2}$
$p=2 r s$
Let $r=\alpha^{5} R, s=\alpha^{5} S$
Then (6) becomes $u^{2}=\alpha^{5}\left(R^{2}-S^{2}\right)$
Again taking $R=\alpha^{3} \bar{R}, S=\alpha^{3} \bar{S}$ in (7), it leads to
$u^{2}=\alpha^{14}\left(\bar{R}^{2}-\bar{S}^{2}\right)$
Consider $\bar{R}=M^{2}+N^{2}, \bar{S}=2 M N$
Then
$u=\alpha^{7}\left(M^{2}-N^{2}\right)$
$v=\alpha^{34}\left(M^{4}+N^{4}+6 N^{2}+M^{2}\right)$
$p=4 \alpha^{31} M N\left(M^{2}+N^{2}\right)$
Thus the corresponding solutions of (1) are
$x=\alpha^{7}\left(M^{2}-N^{2}\right)+\alpha^{34}\left(M^{4}+N^{4}+6 N^{2}+M^{2}\right)$
$y=\alpha^{7}\left(M^{2}-N^{2}\right)+4 \alpha^{31} M N\left(M^{2}+N^{2}\right)$
$z=\alpha^{7}\left(M^{2}-N^{2}\right)-4 \alpha^{31} M N\left(M^{2}+N^{2}\right)$
$w=\alpha^{7}\left(M^{2}-N^{2}\right)-\alpha^{34}\left(M^{4}+N^{4}+6 N^{2}+M^{2}\right)$
$t=\alpha^{9}\left(M^{2}-N^{2}\right)$

REMARKABLE OBSERVATIONS

Employing the solutions ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}, \mathrm{t}$) of (1), a few observations among the special polygonal and pyramidal numbers are exhibited below

1. $\left[\frac{3 P_{x-2}^{3}}{t_{3, x-2}}\right]^{3}-\left[\frac{P_{y}^{5}}{t_{3, y}}\right]^{3}+\left[\frac{6 P_{w-1}^{4}}{t_{3,2 w-2}}\right]^{3}-3\left[\frac{12 p_{z}^{5}}{s_{z-1}-1}\right]^{3} 4 \equiv 0(\bmod 6)$

$$
\text { 2. }\left[\frac{t_{3,2 x-1}}{g n_{x}}\right]^{3}-\left[\frac{3\left(p_{y-1}^{4}-p_{y-1}^{3}\right)}{t_{3, y-2}}\right]^{3}+\left[\frac{36 p_{w-2}^{3}}{s_{w-1}-1}\right]^{3}-6\left[\frac{4 P_{t}^{5}}{t_{3, t}}\right]^{5}
$$

is a cubical integer.

$$
3.36\left[\frac{p_{w-2}^{3}}{s_{w-1}-1}\right]^{3}-6^{2}\left[\frac{P_{z-2}^{3}}{t_{3, z-2}}\right]^{3}+36\left[\frac{P_{x}^{4}}{t_{6, x+1}}\right]^{3}-6^{2}\left[\frac{P_{y-1}^{4}}{t_{3,2 y-2}}\right]^{3}
$$

is a quintic integer

Conclusion

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES

1. L.E. Dickson, 1952, History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York .
2. L.J. Mordell, 1969, Diophantine equations, Academic Press, London.
3. Carmichael, R.D., 1959, The theory of numbers and Diophantine Analysis,Dover Publications, New York
4. M.A. Gopalan \& A.Vijayashankar, 2010, An Interesting Diophantine problem $x^{3}-y^{3}=2 z^{5}$, Advances in Mathematics, Scientific Developments and Engineering Application, Narosa Publishing House, Pp 1-6 .
5. M.A. Gopalan \& A.Vijayashankar, 2010, Integral solutions of ternary quintic Diophantine equation $x^{2}+(2 k+1) y^{2}=z^{5}$, International Journal of Mathematical Sciences 19(1-2), 165169.
6. M.A. Gopalan,G.Sumathi \& S.Vidhyalakshmi, Integral solutions of non-homogeneous ternary quintic equation in terms of pells sequence $x^{3}+y^{3}+x y(x+y)=2 Z^{5}$, accepted \quad for Publication in JAMS(Research India Publication)
7. S.Vidhyalakshmi,K.Lakshmi and M.A.Gopalan, Observations on the homogeneous quintic equation with four unknowns $x^{5}-y^{5}=2 z^{5}+5(x+y)\left(x^{2}-y^{2}\right) w^{2}, \quad$ accepted \quad for Publication in International Journal of Multidisciplinary Research Academy
8. M.A. Gopalan \& A.Vijayashankar, 2011, Integral solutions of nonhomogeneous quintic equation with five unknowns $x y-z w=R^{5}$, Bessel J.Math.,1(1),23-30.
9. M.A. Gopalan \& A.Vijayashankar, solutions of quintic equation with five unknowns $x^{4}-y^{4}=2\left(z^{2}-w^{2}\right) P^{3}$, Accepted for Publication in International Review of Pure and Applied Mathematics.
10. M.A. Gopalan, G. Sumathi \& S. Vidhyalakshmi, 2013, On the non-homogenous quintic equation with five unknowns $x^{3}+y^{3}=z^{3}+w^{3}+6 T^{5}$,IJMIE, vol. 3, issue 4,Pp 501506.

[^0]: *Corresponding author: vidhyasigc@gmail.com

