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ARTICLE INFO                                          ABSTRACT 
 
 

The effects of heat transfer on the flow past an exponentially accelerated vertical plate with ramped 
wall heat flux has been studied. It is found that both the fluid velocity as well as the fluid temperature 
decrease with an increase in Prandtl number. It is also found that the velocity increases with an 
increase in either Grashof number or accelerated parameter. Further, it is found that both the fluid 
velocity as well as the fluid temperature increase when time progresses. The absolute value of the 
shear stress at the plate reduces with an increase in Prandtl number while it increases with an increase 
in Grashof number. 
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INTRODUCTION 
 
The heat transfer is the area that deals with the mechanism 
responsible for transferring energy from one place to another 
when a temperature difference exists. Natural convection is 
one of the most economical and practical methods of cooling 
and heating. Natural convection is caused by temperature or 
concentration induced density gradient within the fluid. Natural 
convection flow occurs as a result of influence of gravity 
forces on fluids in which density gradients have been thermally 
established. With the growing sophistication in technology and 
with the increasing concern with energy and the environment, 
the study of heat transfer has, over the past several years, been 
related to a very wide variety of problems, each with its own 
demands of precision and elaboration in the understanding of 
the particular processes of interest. Areas of study range from 
atmospheric, geophysical and environmental problems to those 
in heat rejection, space research and manufacturing systems. 
 
In a wide class of natural convection processes, heat transfer 
occurs from a heated vertical surface placed in a quiescent 
medium at a uniform temperature. If the plate surface 
temperature is greater than the ambient temperature, the fluid 
adjacent to the vertical surface gets heated, becomes light and 
rises. Heavier fluid from the neighboring areas rushes into to 
take the place of the rising fluid; similarly the flow for a cooled 
surface is downwards. Isachenko et al.(1980) reviewed the 
problems of heat transfer. Hossain and Shayo (1986) studied 
analytically the skin friction in the unsteady free convection 
flow past an accelerated plate. The mass transfer effects on the 
flow past an exponentially accelerated vertical plate with 
constant heat flux was considered by Jha et al.(1991). 
Chandran et al.(1998) studied the unsteady hydromagnetic free 
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convective flow with heat flux and accelerated boundary 
motion. Barletta (1999) presented an analysis on the heat 
transfer by fully developed flow and viscous heating in a 
vertical channel with prescribed wall heat fluxes. The transient 
free convection flow past an infinite vertical plate with 
periodic temperature variation was discussed by Das et al. 
(1999). Narahari et al.(2002) considered the transient free 
convection flow between infinitely long vertical parallel plates 
with constant heat flux at one boundary. Chandran et al.(2005) 
studied the natural convection near a vertical plate with ramped 
wall temperature. The developing flow near a semi-infinite 
vertical wall with ramped temperature was investigated by 
Singh et al. (2008). Muthucumaraswamy et al.(2008) studied 
the heat transfer effects on the flow past an exponentially 
accelerated vertical plate with variable temperature.  
 
Singh and Singh(2010) presented the transient MHD free 
convective flow near a semi infinite vertical wall having 
ramped temperature. The effects of heat transfer and viscous 
dissipation on MHD free convection flow past an exponentially 
accelerated vertical plate with variable temperature was 
investigated by Kishore et al.(2010). The motivation of our 
present investigation is to study the unsteady free convective 
flow of a viscous incompressible fluid past an exponentially 
accelerated vertical plate with ramped wall heat flux. Initially, 
at time 0t  , the plate and the fluid are at the same constant 
temperature T  in a stationary condition. At time > 0t , the 
plate starts to move with exponential accelerated velocity 

0
tu e , where 0u  and   are constants. The heat flux at the 

plate changes rampedly with time. It is found that the velocity 
decreases with increase in Prandtl number Pr . An increase in 
Grashof number Gr  leads to rise the fluid velocity 1u . It is 
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seen that the fluid velocity 1u  increases with an increase in 

accelerated parameter  . It is also seen that the fluid velocity 

1u  increases with an increase in time  . Further, it is seen that 

the fluid temperature   decreases with an increase in Prandtl 
number Pr  while it increases with an increase in time. 
 
Formulation of the problem and its solutions 
 
Consider the unsteady flow of a viscous incompressible fluid 
past an exponentially accelerated vertical plate with ramped 
wall heat flux. Choose a Cartesian co-ordinates system in such 
a way that x -axis is taken along the wall in a vertically 
upward direction and y -axis is normal to it into the fluid. At 
time 0t  , both the fluid and the plate are at rest with the 
constant temperature T . At time > 0t , the plate starts to 

move with an exponential accelerated velocity 0
tu e  in its 

own plane and the heat flux at the plate changes rampedly with 
time. Since the plate is infinitely long in the x - direction, all 
the physical variables are the functions of y  and t  only. 
Under Boussinesq approximation, the unsteady flow is 
governed by the following system of equations  
 

2

2= ( ),u u g T T
t y

  

 
 

 
                                           (1) (1) 

2

2= ,
p

T k T
t c y

 
 

                                                           (2) 

  
where u  is the velocity in the x -direction, T  the temperature 
of the fluid, g  the acceleration due to gravity,   the 
coefficient of thermal expansion,   the kinematic coefficient 
of viscosity,   the fluid density, k  the thermal conductivity, 

pc  the specific heat at constant pressure. The initial and 
boundary conditions are  
 

0, for and 0,u T T y t    
 

 
 

0, as for > 0,u T T y t    
 

where q  is the constant heat flux. Introducing the non-
dimensional variables  

 

 
 

equations (1) and (2) become 
  

2
1 1

2= ,u u Gr
 

 


 
                                            (5) 

 
2

2= ,Pr  
 
 
 

                                                   (6) 

  

where = pc
Pr

k


 is the Prandtl number and 

2

4
0

g qGr
k u


 , the Grashof number. The initial and the 

boundary conditions given by equation (3) become 
    

1 = 0, = 0 f a 0,u or nd     
  

1

for 0 < 1
= , = at = 0,

1 for > 1
u e  




 
 

    (7) 

  
1 0, 0 a f > 0,u s or      

 

where 2
0

=
u
 




 is the non-dimensional accelerated 

parameter. On the use of Laplace transformation technique, 
equations (6) and (5) become  

 
2

2= ,dPrs
d





                                      (8) 

  

 
2

1
1 2= ,d usu Gr

d



                               (9) 

 

where

1 10 0
( , ) = ( , ) and ( , ) = ( , )s su s u e d s e d          

      (10) 
and s  is the Laplace transform variable. 
 

The corresponding boundary conditions for 1u  and   are  

1 2

1 1= , = at = 0,
sd eu

s d s



 





      

1 0, 0 a .u s                             (11) 

The solution of equations (8) and (9) subject to the boundary 
conditions (11) can easily be obtained and are given by  
 

     
2

(1 )( , ) = ,
s

s Pres e
s sPr

 



                      (12) 

 1 7
2

1 (1 )( , ) = .
( 1)

s
sPrs sGr eu s e e e

s s Pr Pr

 



 

 




      (13) 

The inverse Laplace transform of equations (12) and (13) give 
the temperature and the velocity distributions as  
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1 1( , ) = ( , ) ( 1) ( , 1),F H F                        (14) 
 

2 2
1

1( , ) = e ( ) e ( )
2

u e e rfc e rfc               
 

      2 1( , ) ( , )
( 1)
Gr G G

Pr Pr
    

          

 2 1( , ) ( , )
( 1)
Gr G G

Pr Pr
    

                      (15) 

where  
 

     
3 22 2

1
4 1( , ) = 1 6 4 e ,
3 6

PrF Pr e Pr Pr rfc Pr
Pr

     


     

 (16) 

 
5/2 22 2 4

1
1( , ) = 16 36 8

15
PrG Pr Pr e    




 


 

2 2 42 (15 20 4 ) e ( ) ,Pr Pr Pr rfc Pr       
    (17) 

 
5
2 22 4 2 4

2
1

( , ) = 16 36 8 2 (15 20 4 ) e ( ) ,
15

G e rfc
       


  

      
  

   (18) 

= ,
2



                                                            (19) 

 
and erfc ( )x  being complementary error function and 

( 1)H    is the unit step function.  
 

Solution for = 1Pr : 
 
The solutions of equations (6) and (5) subject to the boundary 
conditions (11) are  
 

 
2

1
( , ) = ,

s
s

e
s e

s s
 





                                     (20) 

 

1 3

1 (1 )( , ) = .
2

s
s sGr eu s e e

s s
  




 




           (21) 

 
The inverse Laplace transform of equations (20) and (21)give 
the temperature and velocity distributions as  
 

2 2( , ) = ( , ) ( 1) ( , 1),F H F                        (22) 
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2

u e e rfc e rfc                
 

 
 
 
 
 
 
 
 
 

 3 3( , ) ( 1) ( , 1) ,
2

Gr G H G                       (23) 

 
where  
 

     
3

22 2
2

4 1( , ) = 1 6 4 e ,
3 6

F e rfc     


     
      (24) 

 
5

22
3

1 1( , ) = 2 e ( ) 2 e ( )
2

G rfc rfc        


   
      

 

   23/2 2 31 1 1 2 2 e ,
3

e rfc    


     
 

     (25) 

 

where   is given by (19). 
 

RESULTS AND DISCUSSION 
 

The effect of heat transfer on the flow of a viscous 
incompressible fluid along exponentially accelerated moving 
vertical infinitely long plate has been considered. The 
governing non-dimensional linear coupled partial differential 
equations (5) and (6) have been solved analytically by the use 
of Laplace Transform technique. The numerical result of the 
non-dimensional velocity 1u  and the temperature distribution 

  for several values of Prandtl number Pr , Grashof number 
Gr , accelerated parameter   and time   are presented in 
Figs.2-7. It is observed from Fig.2 that the velocity 1u  
decreases with an increase in Prandtl number Pr . This is 
consistent with the physical point of view that the fluids with 
high Prandtl number have greater viscosity, which makes the 
fluid thick and hence move slowly. It is also observed that the 
temperature is maximum near the plate and gradually decreases 
away from the plate and finally tends to zero for all values of 
Prandtl number Pr . Fig.3 reveals that an increase in Grashof 
number Gr  leads to rise in the fluid velocity 1u . This is due to 
the contribution from the buoyancy force near the plate 
because as the Grashof number increases the buoyancy force 
becomes significant and hence a rise in the velocity near the 
plate is observed. It is seen from Figs.4 and 5 that the velocity 

1u  increases with an increase in either accelerated parameter 

  or time  . It means that the accelerated parameter and time 
accelerate the fluid motion. It may be noted that an increase of 
Prandtl number causes the decrease of thermal boundary layer 
thickness that is why the temperature distribution across the 
thermal boundary layer decreases. Fig.6 displays that the 
temperature decreases with an increase in Prandtl number Pr .  
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Shear stress x  at the moving plate = 0  for = 0.5  
 

 

 Pr   with = 5Gr  Gr   with = 0.71Pr  
  0.71  2  3  7  5  10  15  20  
0.1 
0.2 
0.3 
0.4 

4.54490 
3.46362 
2.66007 
1.94457 

3.14018 
2.41007 
1.95771 
1.59339 

2.81390 
2.16537 
1.79457 
1.51182 

2.38329 
1.84241 
1.57927 
1.40417 

4.54490 
3.46362 
2.66007 
1.94457 

7.12120 
5.39584 
3.94822 
2.58865 

9.69750 
7.32806 
5.23637 
3.23272 

12.27380 
9.26029 
6.52452 
3.87680 
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Fig. 1. Geometry of the problem 
 

 
 

Fig. 2. Velocity profiles for Prandtl number Pr  when = 5Gr , 
= 0.5  and = 0.2  

 

 
 

Fig. 3. Velocity profiles for Grashof number Gr  when 
= 0.71Pr , = 0.5  and = 0.2  

 
It is observed from Fig.7 that the fluid temperature increases 
when time   progresses. 
 

The plate temperature (0, )   and shear stress x  at the plate 

( = 0)  are given by  
 

1 1(0, ) = (0, ) ( 1) (0, 1)F H F                    (26) 

 
Fig. 4. Velocity profiles for accelerated parameter   when 

= 0.71Pr , = 5Gr  and = 0.2  
 

 
 

Fig. 5.  Velocity profiles for time   when = 0.71Pr , = 5Gr , 
= 0.5  

 

 
 

Fig. 6.  Temperature profiles for Prandtl number Pr  when 
= 0.5  and = 0.2  

 

and  

2 2

1

=0

3/2 3/2

1 1 e ( )

( 1) f 1,
( 1)

= =
1 1 e ( )

3 ( 1) f = 1,
2

x

e rf

Gr or Pr
Pr Pru

e rf

Gr or Pr





 


 



 



 


    



                

     

       (27) 
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where  

1
4(0, ) = .
3

F
Pr
 


                                       (28) 

 
 

 
 

Fig. 7. Temperature profiles for time   when = 0.71Pr , 
= 0.5  

 

Numerical values of the shear stress x  at the plate ( = 0)  
due to the flow are presented in Table 1 for several values of 
Prandtl number Pr , Grashof number Gr  and time   with 

= 0.5 . Table 1 shows that the absolute value of the shear 
stress x  at the plate ( = 0)  decreases with an increase in 

Prandtl number Pr  while it increases with an increase in Gr  
for fixed values of time   as it expected since the fluid 
velocity decreases with an increase in Prandtl number Pr  and 
it increases with an increase in time  . Further, it is seen that 
for fixed values of Pr  and Gr , the absolute value of the 
shear stress x  decreases with an increase in time  . It is seen 

from (26) and (27) that the temperature at the plate ( = 0)  

varies with 
1
Pr

.  

 
Conclusion 
 
The effects of heat transfer on the flow past an exponentially 
accelerated vertical plate with ramped wall heat flux have been 
investigated. It is found that the fluid velocity decreases with 
an increase in Prandtl number Pr . An increase in Grashof 
number Gr  leads to rise the fluid velocity 1u . The fluid 

velocity 1u  increases with an increase in either accelerated 
parameter   or time  . The fluid temperature   decreases 
with an increase in Prandtl number Pr  whereas it increases 
with an increase in time  . Further, it is found that the 
magnitude of shear stress x  at the plate ( = 0)  decreases 
with an increase in Prandtl number Pr  while it increases with 
an increase in Gr .  

The absolute value of the shear stress x  reduces when time 
  progresses. It is noted that the plate temperature varies with 

1
Pr

 for fixed value of time  . 
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