

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 07, pp.18098-18104, July, 2015

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

PHYTOCHEMICAL, ANTIOXIDANT AND ANTIBACTERIAL STUDIES ON THE ESSENTIAL OIL OF THE RHIZOME OF CURCUMA AMADA ROXB.

*Mariat George, S. John Britto, M. Thamacin Arulappan, R. R. Marandi, Ignace Kindo and Dessy, V. J.

Rapinat Herbarium, Centre for Molecular Systematics, St. Joseph's College (Autonomous), Trichirappalli, India

ARTICLE INFO	ABSTRACT			
Article History: Received 20 th April, 2015 Received in revised form 18 th May, 2015 Accepted 09 th June, 2015 Published online 31 st July, 2015	This study investigates the chemical composition, <i>in vitro</i> antioxidant activity and antibacterial activity of essential oil of <i>Curcuma amada</i> Roxb. The GC- MS analysis of the oil has shown a profile of 17 compounds. β -Myrcene (69.60%) and β -Pinene (15.15%) are the two major components. The antioxidant activity was done by using 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical, total antioxidant assay, Ferric reducing antioxidant power and nitric oxide scavenging assay. This study proves that the essential oil could serve as an important bio-resource of antioxidants for using in food and pharmaceutical industry. Besides, the essential of <i>Camada</i> remarkably inhibited the growth of 12			

Key words:

> Curcuma amada Roxb., Essential oil, GC-MS Analysis, Antibacterial, Antioxidant.

bacterial strains. Results indicated that essential oil of C.amada included rather higher proportions of mono-terpenoid compounds with good antioxidant and antibacterial properties.

Copyright © 2015 Mariat George et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Mariat George, S. John Britto, M. Thamacin Arulappan, R. R. Marandi, Ignace Kindo and Dessy, V. J. 2015. "Phytochemical, antioxidant and antibacterial studies on the essential oil of the rhizome of Curcuma amada roxb.", International Journal of Current Research, 7, (7), 18098-18104.

INTRODUCTION

Essential oils are valuable natural products used as raw materials in many fields such as perfumes, cosmetics, aromatherapy, spices and nutrition (Baron and Finegold, 1990). Essential oils could be extracted from foliage, stems, flowers, roots, herbs, brushes, and trees right through distillation. They have been used for therapeutic and curative purposes for numerous years all over the world. Importance of essential oils has amplified in current decades with the reputation of aromatherapy, which claims that essential oils and additional aromatic compounds have useful effects (Alizadeh, 2013; Al-Qudah et al., 2014; Topçu et al., 2013; Usano-Alemany et al., 2014). Zingiberaceae or the ginger family constitutes a vital group of rhizomatous medicinal and aromatic plants (Sabu, 2006) characterized by the presence of volatile oils and oleoresins of export value. The usefulness of curcuma has been studied for decades for its chemical and biological properties. It is extensively used as an aromatic medicinal cosmetic in India, besides its use as medicine for various diseases related to skin, cardiovascular and respiratory system.

Rapinat Herbarium, Centre for Molecular Systematics, St. Joseph's College (Autonomous), Trichirappalli, India.

Species of genus Curcuma namely C. longa and C. zedoaria whose essential oils were found to contain ar-turmerone, turmerone, turmerol and zingiberene as the major constituents, possessed antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties

(Mishra and Gupta, 1997; Singh et al., 2002; Mau et al., 2003; Lai et al., 2004; Saccheti et al., 2005; Naz et al., 2010). Most of the other tuberising Curcuma species produce aromatic rhizomes which are rich in essential oils varying in chemical constituents but which remain unexplored for their pharmacological properties. Studies on their biological activity would be beneficial in medicinal applications. Mango ginger (Curcuma amada Roxb.) is a perennial herb, which morphologically resembles the ginger (Zingiber officinale) but, it imparts mango (Magnifera indica) flavour. The mango ginger starch constitutes 43% of amylose and resembles the characteristic of both Curcuma longa and Zingiber officinale starch (Policegoudra and Aradhya, 2007). Essential oil from Curcuma amada Roxb. could serve as an important bio resource of antioxidants for using in food and pharmaceutical industry (Policegoudra et al., 2007). Antioxidants have great importance because they can reduce oxidative stress which could cause damage to biological molecules. Antioxidant compounds play a crucial role in the treatment of various

^{*}Corresponding author: Mariat George,

diseases related to degenerative disorders, namely, cardiovascular and brain diseases, arthritis, diabetes, cancer and immune system decline, by acting as free radical scavengers, and thus decreasing the extent of oxidative damage. Furthermore, studies about antioxidant substances in foods and medicinal natural sources have attracted increased interest in the recent decades. In addition, the use of plant materials in lipids and lipid-containing foods is important because the plant potentials of decreasing rancidity, delaying the formation of toxic oxidation products, maintaining nutritional quality and increasing the shelf life of food products. Hence, evaluation of radical scavenging properties and antioxidant activity are of commercial interest to the pharmaceutical and food industries as a source of natural antioxidants (Valifard et al., 2014; Al-Tawaha et al., 2013; El Abdouni Khiyari et al., 2013; Salehi et al., 2013; Kivrak et al., 2009; Tel et al., 2010). Microbial actions of essential oils are also one of the most extensively studied features of botanical medicine and various aromatic plant species were being investigated for their pharmacological properties (Bouajaj et al., 2013; Ulukanli et al., 2013; Kotan et al., 2008; Hayet et al., 2007; Bouajaj et al., 2013). The objectives of the present study were to identify chemical composition as well as assess the antioxidant and antibacterial properties of the essential oil of the rhizome of Curcuma amada using gas chromatography combined with mass spectrometry (GC-MS) and flame ionization detector.

MATERIALS AND METHODS

Collection of Plant Sample

Curcuma amada was collected from Kottayam and Poonjar (Kerala, India). They were identified and authenticated by Dr. S. John Britto, the Director and Head, The Rapinat Herbarium and Centre for Molecular Systematics, St. Joseph's College (*Autonomous*), Tiruchirappalli, Tamilnadu, India. The voucher specimen (RHT 65181) was deposited at Rapinat Herbarium.

Extraction of Essential oil

The fresh rhizomes of plants were subjected to hydrodistillation for 3 hrs using a Clevenger type apparatus. The obtained essential oil was dried over anhydrous sodium sulphate (Na_2SO_4) and preserved in a sealed vial at 4°C until further analysis.

GC-MS analysis

The analysis of the essential oil was performed using a Hewlett Packard 5890 II GC equipped with a FID detector and HP-5 ms capillary column (30m' 0.25m, film thickness 0.25 μ m). For GC-MS detection, an electron ionization system was used with ionization energy of 70 eV. Helium was the carrier gas, at a flow rate of 1ml/min. Injector and MS transfer line temperature were set at 220 and 290°C respectively. Column temperature was initially at 50°C, and then gradually increased to 150°C at a 3°C/min rate, held for 10 min and finally increased to 250Vc at 10Vc/min. Diluted samples (1/100 in petroleum ether) of 1.0 μ l were injected manually and split less. The components were identified based on the comparison of their relative retention time and mass spectra with those of Wiley 7N Library data and standards of the main components.

Antioxidant activity

DPPH Radical Scavenging activity

Radical scavenging activity was measured by using DPPH scavenging method of (Blois, 1958). A solution of DPPH in methanol ($24\mu g/ml$) was prepared and 2ml of this solution was added to oil at different concentrations ($10-40\mu g/ml$). Absorbance at 517 nm was determined after 30 min at room temperature and the scavenging activity were calculated as a percentage of the radical reduction. Each experiment was performed in triplicate. Ascorbic acid was used as reference compound.

Total antioxidant capacity assay

The total antioxidant capacity assay was determined as described by Prieto *et al.* (1999) Different concentrations of the essential oil (10-40 μ g/ml) were taken and added 1.0 ml of the reagent solution (0.6 M Sulphuric acid, 28 mM Sodium phosphate and 4 mM Ammonium molybdate). The tubes were capped and incubated in a thermal block at 95°C for 90 min. After cooling to room temperature, the absorbance of the aqueous solution of each was measured at 695 nm against a blank. Ascorbic acid was used as standard and the total antioxidant capacity is expressed as equivalents of ascorbic acid.

Reducing power assay

The reducing power of extract was determined by the method of Yen and Duh. (1993) Different concentrations of essential oil (10-40µg/ml) were mixed with 2.5 ml of phosphate buffer (200 mM, pH 6.6) and 2.5 ml of 1 % Potassium ferricyanide. The mixtures were incubated at 50°C for 20 min. After incubation, 2.5 ml of 10% Trichloroacetic acid were added to the mixtures, followed by centrifugation for 10 min. The upper layer (5 ml) was mixed with 5 ml of distilled water and 1 ml of 0.1 % Ferric chloride and the absorbance of the resultant solution were measured at 700 nm.

Nitric oxide scavenging assay

Nitric oxide scavenging activity was measured spectrophotometrically (Govindarajan et al., 2003). The essential oil was added to different test-tubes in varying concentrations (10-40 μ g /ml). Sodium nitroprusside (5mM) in phosphate buffer was added to each test tube to make volume up to 1.5ml. Solutions were incubated at 25°C for 30 minutes. Thereafter, 1.5ml of Griess reagent (1% Sulphanilamide, 0.1% Naphthylethylenediamine dichloride and 3% Phosphoric acid) was added to each test tube. The absorbance was measured immediately at 546 nm and the percentage of scavenging activity was measured with reference to ascorbic acid.

Antimicrobial studies

Bacterial isolates and Bioassay

Thirteen bacterial strains were used in this study: *Escherichia coli*, (MTCC # 119) *Pseudomonas aeruginosa* (MTCC #

2474), Salmonella paratyphi (MTCC # 734), Vibrio cholerae (ATCC # 14104), Streptococcus pneumoniae (ATCC # 7066), Bacillus subtilis (MTCC # 441), Bacillus cereus (ATCC # 4342), Proteus vulgaris (MTCC # 1771), Proteus mirabilis MTCC # 1429), Serratia marcescens (MTCC # 2645), Klebsiella pneumoniae (MTCC # 3040), Staphylococcus aureus *(MTCC#3163)* and Enterobacter aerogenes (MTCC#2990). Evaluation of in vitro antibacterial activity was carried out by the plate diffusion procedure as described by Perez et al. (1995). The essential oils were diluted with Dimethyl sulphoxide (DMSO) and aliquots were loaded on a 6 mm diameter disc, air dried and placed on sterile medium in a petri dish. Plates were incubated at 37°C.

RESULTS AND DISCUSSION

The GC-MS study of *C. amada* has shown many phytochemicals which contributes to the medicinal activity. The *C. amada* rhizome contains about 17 phytochemical compounds such as Caryophyllene, Alloaromadendrene, 1-

Heptatriacotanol, cis- β -Farnesene, cis- β -Farnesene, alpha-Pineneand other compounds. These 17 compounds are responsible for antimicrobial, antifungal, sedative, antitumor, antioxidant and insecticidal in this plant. Camphene is used as stimulant; D-Limoneneis used as antioxidant; β -Pinene is used as antimicrobial; Alloaromadendrene is used as antifugal; cis- β -Farnesene is used as inflammation and1-Heptatriacotanolis used as antispasmodic (Table 1).

Plants with radical scavenging property and antioxidant capacity are useful for medicinal applications and as pharmaceutical industries. So, in the present study, the antioxidant capacity of *C. amada* was evaluated using DPPH radical scavenging method by comparing with the activity of the ascorbic acid as a known antioxidant. The antioxidant capacity of essential oil of *C. amada* was higher than that of the used synthetic antioxidant (Fig.1).

Fable 1.	Chemical	composition	of Essential	Oil from th	e Rhizome of	C.amada
----------	----------	-------------	--------------	-------------	--------------	---------

No.	Name of compound	Chemical formula	Molecular mass	Structure	Rt	% area	Uses
1.	2,6,6-Trimethylbicyclohept-2- ene	$C_{10}H_{16}$	136.24	The second	4.512	4.98	Insecticide, Cosmetics
2.	Camphene	$C_{10}H_{16}$	136.24		4.803	0.42	Stimulant, tonic, antiseptic and antispasmodic
3	Bicyclo[3.1.1]heptane, 6,6- dimethyl-2-methylene-, (1S)-	$C_{10}H_{16}$	136.2340	$\langle $	5.387	15.1	Anti-Infective Agents, Anti-inflammatory, Flavoring agents, Insecticides
4	<u>β-Pinene</u>	$C_{10}H_{16}$	136.23		5.719	69.6	Natural insecticide, antimicrobial activities
5	β-Myrcene	$C_{10}H_{16}$	136.23	GH ₂ H ₃ C H ₃ C	5.719	69.6	Analgesic
6	D-Limonene	$C_{10}H_{16}$	136.23	, nied	6.491	0.30	Antioxidant and Anti- inflammatory
7	α-Pinene	$C_{10}H_{16}$	136.23	CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	6.652	0.35	Anticancer
8	β-ocimene	$C_{10}H_{16}$	136.23	ри, С ⁰¹ 5	6.652	0.35	Antioxidant, Anti- inflammatory
9	1,3,6-Octatriene, 3,7-dimethyl-, (Z)	$C_{10}H_{16}$	136.23	J	6.652	0.35	Antimicrobial
10	Caryophyllene	$C_{15}H_{24}$	204.36	Har Har Contraction	16.60	1.33	Antifungal, Anti- inflammatory effect

Continue.....

11	Benzene, 1-(1,5-dimethyl-4- hexenyl)-4-methyl-	$C_{15}H_{22}$	202.3352		18.10	1.01	Antioxidant Activity
12	2-Pyridinamine, 4,6-dimethyl-	$C_7 H_{10} N_2$	122.1677		18.10	1.01	Antioxidant, Antiulcer
13	1,2-Benzenediamine, 4-methyl	$C_7 H_{10} N_2$	122.1677		21.03	0.83	Antimicrobial
14	Alloaromadendrene	<u>C₁₅H₂₄</u>	204.35106		28.223	1.51	Anthelmintic
15	1-Heptatriacotanol	C ₃₇ H ₇₆ O	536.998740	antan ahaan amaan	28.223	1.51	Anthelmintic, Purgative, Antispasmodic
16	cis-β-Farnesene	$C_{15}H_{24}$	204.3511		28.881	0.55	Perfume
17	α-Farnesene	C ₁₅ H ₂₄	204.3511	» . ^. ·	28.881	0.55	Perfume

Fig. 1. DPPH Scavenging of *C. amada* essential oil, compared to that of Ascorbic acid

Fig. 2. Total antioxidant assay of *C. amada* essential oil, compared to that of Ascorbic acid

The total antioxidant capacity of the essential oil was determined by phosphormolybdenum with using Ascorbic acid as standard. In phosphormolybdenum assay, the concentrations range from 10-40µg/mL, essential oil showed higher dose dependent reducing activity than ascorbic acid (Fig. 2). The result obtained was confirmed by the high potency of essential oil towards the transition metal ions. The reducing power assay was found to be 0.25 at 40µg/mL in essential oil. This result showed that ascorbic acid exhibited excellent reducing power activity than *C. amada* essential oil (Fig. 3).

Fig. 3. Reducing Power Assay of *C. amada* essential oil, compared to that of Ascorbic acid

Nitric Oxide (NO) scavenging assay is based on the scavenging ability of essential oil, as well as ascorbic acid, which is used as standard. The scavenging of NO was found to increase in dose dependent manner. Maximum inhibition of NO was observed in the extracts of highest concentration $(40\mu g/ml)$ for both the samples. At this maximum concentration, inhibition was found to be 67% for ascorbic acid, which serves as the standard. For *C. amada* essential oil inhibition was found to be higher 63 % (Fig. 4).

Fig. 4. Nitric oxide scavenging of *C. amada* essential oil, compared to that of Ascorbic acid

 Table 2. Antibacterial activity (inhibition zone) of the essential oil of

 C. amada

no	Name of Bacteria	Zone in mm		
		C.amada oil	Antibiotic	
			(Streptomycin)	
1	Staphylococcus aureus	18mm	17mm	
2	Escherichia coli	16mm	19mm	
3	Klebsiella pneumoniae	17mm	20mm	
4	Pseudomonas aeruginosa	10mm	18mm	
5.	Salmonella paratyphi	15mm	18mm	
6	Vibrio cholerae	15mm	20mm	
7	Enterobacter aerogenes	17mm	19mm	
8	Streptococcus pneumoniae	19mm	17mm	
9	Bacillus subtilis	16mm	21mm	
10	Bacillus cereus	11mm	16mm	
11	Proteus mirabilis	15mm	18mm	
12	Proteus vulgaris	14mm	19mm	
13	Serratia marcescens	-	14mm	

Plate 1. Antimicrobial studies - essential oil of Curcuma amada

Therefore, the antioxidant properties of essential oil could play a valuable role in the food conservation and also in the prevention of oxidative damage related to the path physiology of many diseases, including significant and prevalent neurodege. The antibacterial property of the essential oil and extracts has led to the basis of many applications. Curcuma, is gaining importance world wide as a potential source of new drugs to combat a variety of ailments as the species contains molecules credited with anti-inflammatory, hypocholestremic, choleratic, antimicrobial, insect repellent, ant-rheumatic, antifibrotic, antivenomous, antiviral, antidiabetic, antihepatotoxic as well as ant cancerous properties (Sukari Mohd et al., 2010). The antibacterial activity of the essential oil of C. ceasia, C.amada and antifungal activity of essential oil of C. aromatica were earlier reported by Banerjee and Nigam (1976) Angel et al. (2012) Rao (1976) respectively. This study also demonstrated that the essential oil displayed antimicrobial activity on Gram negative and Gram positive bacteria. The strong antimicrobial activity of the essential oil against almost all the susceptible microorganisms can be attributed to the presence of high concentration of monoterpenes. The essential oil remarkably inhibited the growth of tested Gram positive and Gram negative bacteria except Serratia marcescens (Table 2). The extract showed significant antimicrobial activity against (19mm), and Staphylococcus aureus (18 mm) (Plate 1).

Primary studies were conducted in advance especially in practical applications of the essential oils in fragrance and flavor industries, as well as in the chemical andpharmaceutical industries. Gas chromatography-mass spectrometry (GC-MS) is certainly a useful and powerful tool in the essential oil analysis. It is noteworthy that the composition of the essential oils from a particular species of a plant can differ between harvesting seasons, extraction methods, and geographical sources, and that those from a different parts of the same plant can also differ widely (Yoshioka et al., 2004). Maturation stages constitute an important factor influencing essential oil composition in some plants (Telci et al., 2009). The synergistic role of various constituents present in the oil might also features to the antioxidant nature of essential oil. However, it was also considered that minor components, might also have likely interactions between the major components which might also affect the antioxidant activities.

In that sense, for biological determination, it is more enlightening to study the entire oil rather than its components. Many plants species are currently used as a source of nutritional additives because of their antioxidant properties that increase immunity to diseases. The essential oil of Curcuma amada showed high amount of in vitro antioxidant activity. This study also demonstrated that the C. amada essential oil displayed antimicrobial activity on Gram negative and Gram positive bacteria. The tested microorganisms are pathogens or opportunists for man, animal and plants, and they cause contamination and deterioration in food, water and air. This in vitro experimental study clearly shown the efficient ant bactericidal action of C. amada essential oil and support the freely use of this natural, pleasant and eco-friendly product as a preservative in food and water which are susceptible for generating pleasant odors.

Conclusion

Quantitative analyses of the chemical composition of the investigated essential oils of Curcuma amada were tested. Gas chromatography/mass spectrometry (GC-MS) analysis revealed the presence of 17 major chemicals in all three of the oils. Chemical identification of the oil constituents was conducted based on their retention time (tR), retention indices (KI) and mass spectral data, as well as by computer search of mass spectral databases. The chemical structures and medicinal properties also identified. The sample was subjected to screening for their possible antioxidant activity by using 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical, total antioxidant assay, Ferric reducing antioxidant power and nitric oxide scavenging assay. Results showed that the essential oil possessed a strong degree of antioxidant activity. The essential oil remarkably inhibited the growth of tested Gram positive and Gram negative bacteria.

REFERENCES

- Alizadeh A. 2013. Essential oil constituents, antioxidant and antimicrobial activities of *Salvia virgata* Jacq. from Iran. J Essen Oil Bearing Plants., 16(2): 172-182.
- Al-Qudah MA, Al-Jaber HI, Abu Zarga MH, Abu Orabi ST. 2014. Flavonoid and phenolic compounds from *Salvia palaestina* L. growing wild in Jordan and their antioxidant activities. *Phytochemistry.*, 99: 115-120.
- Al-Tawaha A, Al-Karaki G, Massadeh A. 2013. Antioxidant activity, total phenols and variation of chemical composition from essential oil in sage (*Salvia officinalis* L.) grown under protected soilless condition and open field conditions. *Adv Environ Biol.*, 7(5): 894-901.
- Angel GR, Vimala B AND Bala Nambisan, 2012. Antioxidant and antimicrobial activity of essential oils from nine starchy *curcuma* species. *International Journal of Current Pharmaceutical Research.*, Vol 4, Issue 2, 45-47
- Banerjee A and Nigam SS. 1976. Antibacterial activity of essential oil of *C. caesia*. Indian Journal of Pharmacology, 38: 103 – 105.
- Baron E.-J. and Finegold S.-M.1990. Methods for test- ing antimicrobial effectiveness. *In: Diagnostic Micro- biology* (Stephanie M., ed.). C. V. Mosby Co, Balti- Comore, pp., 171-194.
- Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. *Nature.*, 181: 199-1200.
- Bouajaj S, Benyamna A, Bouamama H, Romane A, Falconieri D, Piras A, *et al.* 2013.Antibacterial, allelopathic and antioxidant activities of essential oil of *Salvia officinalis* L. growing wild in the Atlas Mountains of Morocco. *Nat Prod Res.*, 27(18): 1673-1676.
- Bouajaj S, Benyamna A, Bouamama H, Romane A, Falconieri D, Piras A, et al. 2013., Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat Prod Res., 27(18): 1673-1676.
- El Abdouni Khiyari M, Kasrati A, Jamali CA, Zeroual S, Markouk M, Bekkouche K, *et al.* 2013. Chemical composition, antioxidant and insecticidal properties of essential oils from wild and cultivated *Salvia aucheri* subsp. blancoana (Webb. & Helder), an endemic,

threatened medicinal plant in Morocco. *Ind Crops Prod.*, 2014; 57: 106-109.

- Govindarajan, R., Rastogi, S., Vijayakumar, Metal, 2003. Studies on antioxidant activities of *Desmodiumgangeticum*. *Bio Pharm Bull.*, 26:1424.
- Hayet E, Fatma B, Souhir I, Waheb FA, Abderaouf K, Mahjoub A, *et al.* 2007. Antibacterial and cytotoxic activity of the acetone extract of the flowers of Salvia sclarea and some natural products. *Pak J Pharm Sci.*, 20(2): 146-148.
- Kivrak İ, Duru ME, Öztürk M, Mercan N, Harmandar M, Topçu G. 2009. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of *Salvia potentillifolia*. *Food Chem.*, 116(2): 470-479.
- Kotan R, Kordali S, Cakir A, Kesdek M, Kaya Y, Kilic H. Antimicrobial and insecticidal activities of essential oil isolated from Turkish Salvia hydrangea DC. ex Benth. Biochem Syst Ecol 2008; 36(5-6): 360-368.
- Lai EYC, Chyau CC, Mau JL, Chen CC, Lai YJ, Shih CF, Lin LL. 2004. Antimicrobial activity and cytotoxicity of the essential oil of *Curcuma Zedoaria*. *The American Journal of Chinese Medicine.*, 32(2): 281-290.
- Mau JL, Lai EYC, Wang NP, Chen CC, Chang CH, Chyau CC. 2003.Composition and antioxidant activity of the essential oil from *Curcuma zedoaria*. Food Chemistr,. 82(4): 583-591.
- Mishra N, Gupta SS. 1997.Anti -inflammatory and antihyaluronidase activity of volatile oil of *Curcuma longa*. *Journal of Research in Ayurveda and Siddha.*, 1-2(18): 56-62.
- Murray, P.P., Baron, E.J., Pfaller, M.A., Tenove, F.C. and Yolke, R.H. 1995. *Manual of clinical microbiology*, ASM, Washington DC.
- Naz S, Jabeen S, Ilyas S, Manzoor F, Aslam F, and Ali A. 2010. Antibacterial activity of *C longa* varieties against different strains of bacteria. *Pakistan Journal of Botany*. 42(1): 455 – 462.
- Policegoudra RS, Aradhya SM. 2007. Biochemical changes and antioxidant activity of mango ginger (*Curcuma amada* Roxb) rhizomes during postharvest storage at different conditions. *Post harvest biology and technology.*, 46: 189-194.
- Policegoudra RS, Divakar S, Aradhya SM. 2007. Identification of Difurocumenonol, a novel antimicrobial compound from mango ginger (*Curcuma amada* Roxb) rhizome. *Journal of Applied Microbiology.*, 102: 1594-1602.
- Prieto P, Pineda M, Aguilar M. 1999. Spectrophometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to determination of vitamin E. *Anai Biochem.*, 269: 337-341.
- Rao JT. 1976. Antifungal activity of essential oil of *C. aromatica. Indian Journal of Pharmacology*, 38: 53-54.

- Sabu M. 2006. Zingiberaceae and Costaceae of South India. Indian Association for Angiosperm Taxonomy: Calicut, India.
- Saccheti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. *Food Chemistry*., 91: 621–632.
- Salehi P, Sonboli A, Moghadam SE. 2013. Essential oil composition and antioxidant activity of *Salvia staminea* Benth. extracts. *J Essen Oil Bearing Plants.*, 16(5): 582-587.
- Singh G, Singh OP, Maurya S. 2002. Chemical and biocidal investigations on essential oils of some Indian *Curcuma* species. *Journal of Progress in crystal growth and characterization of materials.*, 45: 75-81.
- Sukari Mohd. Aspollah, Wah Tang Sook, Suhaila Md. Saad et al. 2010. Bioactive sesquiterpenes from Curcuma ochrorhiza and Curcuma heyneana. Natural Product Research., Vol. 24, No. 9, pp. 838–845. 21.
- Tel G, Öztürk M, Duru ME, Harmandar M, Topçu G. 2010. Chemical composition of the essential oil and hexane extract of *Salvia chionantha* and their antioxidant and anticholinesterase activities. *Food Chem Toxicol*., 48(11): 3189-3193.
- Telci I, Demirtas I, Sahin A. 2009. Variation in plant properties and Essential oil composition of sweet fennel (*Foeniculum vulgare* Mill.) fruits during stages of maturity. *Industrial Crops and Products.*, 30: 126–130.
- Topçu G, Öztürk M, Kuşman T, BablaDemirkoz AA, Kolak U, Ulubelen A. 2013. Terpenoids, essential oil composition, fatty acid profile, and biological activities of Anatolian Salvia fruticosa Mill. Turk J Chem., 37(4): 619-632.
- Ulukanli Z, Karabörklü S, Cenet M, Sagdic O, Ozturk I, Balcilar M. 2013. Essential oil composition, insecticidal and antibacterial activities of *Salvia tomentosa* Miller. *Med Chem Res.*, 22(2): 832-840.
- Usano-Alemany J, Palá-Pául J, Rodríguez MS, Herraiz-Peñalver D. Chemical description and essential oil yield variability of different accessions of *Salvia lavandulifolia*. Nat Prod Commun, 2014; 9(2): 273-276.
- Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V. 2014. Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S Afr J Bot., 93: 92-97.
- Yen and Duh P D. 1993.Antioxidant properties of methanolic extracts from *peanut hulls*. J Am oil Chem. Soc., 70: 383-386.
- Yoshioka T E, Fujii M, Endo K, Wada Y Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods – a review. *Int J Food Microbiol.*, 94: 223-253.