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INTRODUCTION 
 
Combined heat and mass transfer on double diffusive convection in electrically conducting  binary fluid is a subject of inten
research due to the occurrence of such fluids in nuclear engineering heat transfer, industrial problems involving sudden heat
cooling, solute intrusion in sediments in coastal environments, chemical processes and specie transport through biological 
membranes and many others. Over the years, special reviews and documentation has been given to this area especially as shown 
the works of Mamou et al. (2001), Mansour 
horizontally sparsely packed porous system subject to vertical fluxes of heat and solute using the Brinkman model and the 
threshold for the onset of subcritical and stationary convection were determined. Mamou and Vasseur (1999), Kalla 
studied lateral heating on bifurcation phenomena present in double diffusive convection and found that the lateral heating ac
an imperfection brought to the bifurcation curves. Multiple steady state solutions with different heat and mass transfer rates were 
found to co-exist. Liu et al. (2008) studied double diffusive natural convection within a vertical porous enclosure with localized 
heating and salting from one side using the finite element based volume method. Their result showed that the heat and mass 
transfer rates can be controlled to a certain extent by varying the relative position of the heating elements. Kumar and Moha
(2012) studied double diffusive convection in an Oldroydian viscoelastic fluid under the simultaneous effects of magnetic field and 
suspended particles through a porous medium.
stabilization of convective flows in several configurations and at some fixed values of the governing parameters is that of Gelfgat 
and Bar-Yoseph (2001), Hassanien and Obied
Vasseur (2007).  
 
Sheikholeslam et al. (2014) showed MHD effect on natural convection heat transfer in an L
They showed the effect of Hartmann number, volume fraction of nanoparticles, Rayleigh number and inclination angle on 
streamline. Many engineering flow processes take place at high temperature and many of such fluids can be electrically 
conducting.  
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This study investigates the effect of electromagnetic field and radiation absorption on natural 
convection in a horizontal shallow porous cavity filled with an electrically conducting binary fluid. 
The vertical and horizontal walls of the cavity are subjected to cross fluxes of heat and mass. The 
Darcy model, Rosseland approximation for the radiative flux and the Boussinesq approximation for 
density variations are used in the formulation of the problem. In the limit of shallow cavity, parallel 
flow approximation is adopted and the result established that the flow intensity, heat and mass transfer 
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Accordingly knowledge of radiative heat transfer and magnetic field become essential since both are correlative in many 
application fields (Ogulu and Amos, 2002). The process of cooling of the first wall inside a nuclear reactor containment vessel 
where the hot plasma is isolated from the wall by applying magnetic field is one example of such field. A numerical study of 
conjugated heat (natural convection-thermal radiation) and mass in a square cavity filled with a mixture of Air-CO2 was studied by 
Serrano-Avellano and Gijon-Rivera (2014) and showed that radiative heat transfer does have effect on the flow especially for high 
Rayleigh number. According to reasonable simplification, many researchers studied the effects of radiation in convective flows. 
For optically thick fluids , where self-absorption exist, the Rosseland approximation was used to describe radiative heat flux in the 
energy equation (Azzam, 2002; Israel-Cookey and Amos, 2014). 
 
In view of the above studies, it is therefore important to consider the simultaneous effect of radiative heat and magnetic field on 
flow structures alongside the imposition of cross fluxes of heat and mass. 
 
Mathematical formulation 
 
Assuming two-dimensional flow, double diffusive convection is studied in a horizontal porous layer of length �, height �, 
permeability �, and saturated with a binary fluid (see Figure 1). The origin of the coordinate system is located at the centre of the 

cavity with � ′	, �′	being the horizontal and vertical coordinates respectively. Heat flux qh   is applied on the horizontal walls while  

fluxes of heat q and mass �′ is applied on the horizontal walls. The porous medium is considered to be uniform and in local 

thermal and compositional equilibrium with the fluid. The effects due to viscous dissipation and porous medium inertial forces are 
assumed negligible.  
 

 
 

Figure 1. Schematic of the physical problem 
 

The binary fluid is assumed to be Newtonian, radiating and incompressible. We also assume that the porous medium satisfies the 
Oberbeck-Boussinesq approximation, (Nield and Bejan, 2006), 
 

 )()(1 000 CCTT cT                                                                                                        ………………….. (1) 

 

Where the subscript zero refers to reference state, T  and c are thermal expansion coefficient and concentration expansion 

coefficient respectively and are evaluated at the reference state. A magnetic field of intensity ��⃗ �	is applied perpendicular to the 
channel. Hence using the Darcy model and taking into account the Soret effect, the dimensional governing equation expressing 
continuity, momentum, energy and specie concentration are  
 

0. V


                                                                                                                                                              …….……………(2) 
 

0BjgPV e


 




                                                                                                                         ………………….. (3) 

 

      rfp qTTVc
t

T
c 




.. 2


                                                                                                ………………..(4) 

 

TCDCDCV
t

C





 2

0
2 *.


                                                                                                     ……………… (5) 

 

where pc)( and fc)( are the heat capacity of the porous medium and the fluid respectively,  , the permeability of the 

porous medium, V

 is the Darcy velocity, rq is the radiative flux, is the porosity of the porous medium. 
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For optically thick fluids, where self-absorption exists, the Rosseland approximation (Israel-Cookey and Amos, 2014) is used to 
describe the radiative flux in the energy equation. That is  
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where *  is the Stephen - Boltzmann constant,   is the mean absorption coefficient. We now assume that the temperature 

differences within the fluid and the porous medium is sufficiently small such that 
4T may be expressed as a linear function of 

temperature, �. By using Taylor’s series expansion about the free stream temperature, oT , and neglecting higher order term, we 

obtain  
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Consequently equation (4) becomes   
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We note that the electric current ej


  is defined by  
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where    is electrical conductivity and e  is the electric potential. Equation (9) is the Ohm’s law and equation (10) is the 

conservation of electric current.  
 

With electrically insulated boundaries, the electric potential e is constant and in most laboratory experiments, the magnetic 

Reynolds number is very small (Kaddeche et al., 2003) and the magnetic field remains almost unperturbed and having neglected  
the induced magnetic field, equation (3) becomes  
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Using Equation (1) on (11), eliminating the pressure in the resulting expression and employing the stream function formalism, we 
have  
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We now introduce the following non dimensional variables into equations  (5), (8), (12) and (13), 
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The result is  
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The corresponding boundary conditions are 
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The thermal Rayleigh number  andRT  the solutal Rayleigh number CR  are related by 
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The heat and mass transfer rates are expressed in term of the Nusselt and Sherwood numbers respectively as  
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METHOD OF SOLUTION 
 

In general, analytical solutions to equations (15) – (18) is difficult to obtain. However, in the limit of shallow cavity ),1( rA  it 

is possible to find approximate solutions (Bahloul et al. (2003) and hence using the parallel flow approximation we have the 
following simplifications: 
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Using equation (21) in equations (15) – (18) we obtain  
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Subject to the boundary conditions in the y  direction 
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where S   and CS  are constants.  

The solutions of equations (22) – (24) using (25) are  
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is the value of the stream function at the centre of the enclosure. The equations for the constants CSandS  are based on heat 

and solute balances across any transversal section of the cavity. 
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On evaluation of (30) and (31) we obtain  
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Substituting equations (32) and (33) into equation (29) yields, 
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For given values of TR , Le , ,,,, ShRN  equation (34), is solved numerically.  

The heat and mass transfer are given according to (20), that is  
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Setting ,00  the purely diffusive state is obtained from equation (27) and (28), that is, 
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Thus for the purely diffusive state the heat and mass transfer is 
  

1Nu
                                                                                                                                                                       ……………. (39) 

and 
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1                                                                                                                                                       ………………… (40) 

 

RESULTS AND DISCUSSION 
 
Convective motion induced by a combination of thermal and solutal buoyancy forces arising from thermal and solutal boundary 
conditions applied on the enclosure are obtained under parallel flow approximation and numerically using the software 
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‘mathematica’ (Wolfram, 1991), to solve equation (34) with given values of TR
, Le , hRN ,, and S .  Up to five solutions are 

possible but we consider only the ones that are real. The evolution of the flow intensity, |Ѱ�|, the heat and mass transfer, �� and 
�ℎ respectively and the possibility of any unstable branch depends on the values attributed to the governing parameters. In general, 
both the intensity and direction of rotation of the convective flow within the porous layer are strongly affected by the buoyancy 
ratio, �, the Soret, �, the magnetic parameter, � , the radiation parameter, �, the lateral heating parameter, ℎ, and the thermal 
Raleigh number, ��. Points in the tables with ‘--’ indicates entry which otherwise would have been a complex value. 
 
SOLUTAL DOMINATED AIDING FLOW 
 
 For  � > 0 , we have typical features of aiding thermal and solutal forces. Three real solutions for the stream function are 
obtainable in this case and are denoted by Ѱ�,� (clockwise), Ѱ�,� and Ѱ�,� (counterclockwise). Table 1 shows that as the radiation 

parameter,	� ,is increased, an initially stable Ѱ�,� solution for the stream function becomes unstable at the critical radiation value 
of  ��� = 2.01 when �� = 10. This critical radiation value depends on the thermal Rayleigh number. Increase in the thermal 
Rayleigh number increases the critical radiation value. This critical radiation value  is unaffected by change in Soret . One of the 
counterclockwise branches, Ѱ�,� exhibited weak flow and was aided to be at rest by increasing Soret, specifically at � ≥ 0.5, and 
this is irrespective of increase or decrease in the thermal Raleigh number. 
 
 
                                                Table 1. Influence of Soret and radiation on the flow intensity for 
                                                                �� = ��, � = �, � = �.�, �� = ��  
 

� �  Ѱ�,� Ѱ�,� Ѱ�,� 

         0 0.1 
0.3 
0.5 
2.0 
2.1 
5.0 

-3.37867 
-3.46192 
-3.61298 
-3.89287 
-3.87426 
-1.61925 

0.0144294 
0.0133985 
0.0117257 
0.00299956 
0.00297591 
0.000581265 

3.09891 
3.17487 
3.31178 
3.13768 
3.11577 
1.54148 

       0.5 0.1 
0.3 
0.5 
2.0 
2.1 
5.0 

-3.3651 
-3.44582 
-3.59192 
-3.59472 
-3.56942 
-1.151 

0 
0 
0 
0 
0 
0 

3.04591 
3.11991 
3.2524 
2.51135 
2.47803 
1.07332 

 
Figure 2a shows that, though, increase in radiation decreases heat transfer by convection, the heat transfer inside the cavity is 
increased by the thermal Rayleigh number. Increase in radiation absorption also decreases mass transfer, (figure 2b). The effect of 
the thermal Rayleigh number is not as significant since at �� ≥ 32 the mass transfer rates for � = 2 and � = 0.3 are the same. 
Also for all the displayed values of  �, the mass transfer rates are nearly the same at �� ≥ 68. 
 

 
Figure 2a: Influence of radiation and thermal Rayleigh number on heat transfer for  

� = �.�, � = �.�, �� = ��, � = �, � = �.� 
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Figure 2b: Influence of radiation and thermal Rayleigh number on mass transfer for � = �.�, 

� = �.�, �� = ��, � = �, � = �.� 
 

Table 2 shows that the flow intensity decreases with increase in magnetic field. The counterclockwise branch, Ѱ�,� , remains near 
the rest  state as the Soret is increased and perfectly at rest when S ≥ 0.5 . Figure 3 indicates that for a given thermal Rayleigh 
number, �� , the flow is considerably inhibited by the retarding effect of the electromagnetic body  force.   The thermal Rayleigh 
number itself increases the flow intensity 
 

                                      Table 2. Influence of Soret and magnetic field on the flow intensity  
                                                         for �� = ��, � = �.�, �� = ��, � = � and � = �.� 
 

� �  Ѱ�,� Ѱ�,� Ѱ�,� 

0 0 
0.5 
1 
2 
5 
7 

-4.09551 
-3.61298 
-2.73415 
-1.43263 
-0.362267 
-0.218683 

0.011704 
0.0117257 
0.0117915 
0.0120622 
0.0143861 
0.0150275 

3.80332 
3.31178 
2.40527 
1,04947 
0.27513 
0.165163 

0.5 0 
0.5 
1 
2 
5 
7 

-4.07856 
-3.59192 
-2.70088 
-1.34364 
-0.239634 
-0.105692 

0 
0 
0 
0 
0 
0 

3.75283 
3.2524 
2.31339 
0.739301 
0.156179 
0.0667733 

 

 

 
Figure 3. Influence of thermal Rayleigh number  and magnetic field on the flow intensity 

for		�� = �, � = �.�, � = −�.�, � = � and � = �.� 
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Table 3 shows that the flow circulation and transfer are decreased by the magnetic field. Consequently at � = 5 the heat transfer is 
almost by pure conduction (� ≈ 1). The mass transfer shows significant change in Soret  but not in magnetic field. For � < 2,  �ℎ 
is rather related to concentration distribution within the cavity induced by the Soret effect and by convection, with decrease in 
mass transfer when � ≥ 2 and � ≥ 0. 
                        

Table 3. Influence of Soret and magnetic field on Heat and mass transfer 
for �� = ��, � = �.�, �� = ��, � = � and � = �.� 

 

� �  Ѱ�,� ��  �� 

0 0 
0.5 
1 
2 
5 

-5.94222 
-5.28271 
-4.09551 
-2.37201 
-0.627893 

5.58396 
5.33124 
4.64522 
2.96456 
1.21555 

5.98412 
5.97992 
5.96669 
5.90199 
4.88998 

0.5 0 
0.5 
1 
2 
5 

-5.93410 
-5.27226 
-4.07856 
-2.33028 
-0.481625 

5.58128 
5.32661 
4.63277 
2.91573 
1.13869 

11.5602 
11.4534 
11.1406 
9.99721 
5.68253 

 

Heat transfer driven flows 
 

For the particular case � = 0, the solutal buoyancy forces are null and the flow intensity induced by radiative flux and the thermal 
fluxes imposed on the vertical walls of the cavity increases. Three convective solution are possible one clockwise, Ѱ�,�, and two 

counterclockwise, Ѱ�,� and Ѱ�,�,(but two are shown in Table 4). The clockwise branch becomes unstable at the critical radiation 
value ��� = 3.1 . It is observed that the cross fluxes of heat aid the clockwise motion but oppose the counterclockwise motion At 
� = 3.8 and ℎ = 0.1 only one convective solution is possible. Increasing the cross fluxes to ℎ = 0.2 reduces the radiation value to 
� = 3.7 for one convective solution to persist. 
 

Table 4. Influence of radiation and lateral heating on the stream function for 
												�� = ��, � = �.�, �� = ��, � = �, � = �.� 

 

ℎ � Ѱ�,� Ѱ�,� 

0.1 0 
0.5 
2 
3 
3.1 
3.2 
3.5 
3.7 
3.8 
4 

-0.538156 
-5.95938 
-10.2624 
-10.8012 
-10.5709 
-10.259 
-8.67158 
-6.77092 
-5.39838 
-2.10668 

5.22141 
5.79654 
10.0441 
10.4006 
10.1248 
9.75352 
7.78878 
4.68864 
-- 
-- 

0.2 0 
0.5 
2 
3 
3.1 
3.2 
3.5 
3.6 
3.7 
4 
5 

-5.45659 
-6.03607 
-103666 
-10.986 
-10.7745 
-10.4864 
-9.02925 
-8.28068 
-7.35277 
-3.47899 
-0.479773 

5.13541 
5.70964 
9.9294 
10.1814 
9.87723 
9.46741 
7.1932 
5.54382 
-- 
-- 
-- 

 

 
Figure 4. Influence of magnetic field and thermal Rayleigh number on the flow intensity for 

� = �.�, � = −�.�, �� = ��, 	� = �.� and � = � 
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Figure 4 shows that increasing the magnetic field, � , decreases the flow intensity and this trend remains even on increase or 
decrease in Soret, while increasing the thermal Rayleigh number,	��  increases the flow intensity for both clockwise and 
counterclockwise motions. The retarding effect of the magnetic field is such that for the clockwise branch at � > 3, ��=30 and 
� > 4, �� = 50 respectively, no convective solution is observed. Similarly for the counterclockwise branch, at � > 4, �� > 50 
no convective solution is observed. The other counterclockwise solution, (Ѱ

�,�
), remains near the rest state and is almost 

unchanged with increasing �� (although not shown in our representations). 
 
Solutal dominated opposing flow 
 
The typical feature of opposing double diffusive flow (�˂0) is considered with the main contribution for buoyancy  due to the 
solutal one. Up to five  solutions are possible for the stream function depending on the values attributed to the governing 
parameters. Because of the peculiarities of the characteristics exhibited by these solution, the stream function value will still  be 
denoted by Ѱ�,�	,Ѱ�,�	,Ѱ�,�	,Ѱ�,� and Ѱ�,�. These solution are either clockwise, counterclockwise or of the rest state. 
Table 5 provides exemplary result under the influence of radiation, Soret and thermal Rayleigh number. Two clockwise, two 
counterclockwise and a rest state solution prevails at � = −0.5. At � = −0.25, the rest state disappears and becomes convective 
(clockwise) though of low intensity and remains so even at � = 0.5. A stability analysis of Ѱ�,� shows that it is unstable at the 
critical radiation value ���=2.7. This critical radiation value is unaffected by Soret at the same thermal Rayleigh number. The 
counterclockwise solution increases in intensity as the radiative flux is increased and has no real value at certain radiation values 
depending on the thermal Rayleigh number. 
 

Table 5. Influence of radiation and Soret  on the stream function for  �� = ��, � = −�, 
� = �.� and	� = �.�, �� = �� 

 

� �  Ѱ�,� Ѱ�,� Ѱ�,� Ѱ�,� Ѱ�,� 

-0.5 0 
0.5 
2 
2.6 
2.7 
3 
3.1 
3.2 
3.3 
3.4 

-4.84043 
-5.46717 
-9.87001 
-10.5564 
-10.5114 
-9.92313 
-9.50078 
-8.86796 
-7.70177 
-- 

-0.684383 
-0.778987 
-1.89489 
-2.78211 
-2.28798 
-3.82425 
-4.23788 
-4.80834 
-5.85257 
-- 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1.17298 
1.23905 
1.23905 
3.53773 
3.82449 
5.2451 
-- 
-- 
-- 
-- 

4.35183 
5.00711 
9.34643 
9.80073 
9.67488 
8.51287 
-- 
-- 
-- 
-- 

0.5 0 
0.5 
2 
2.6 
2.7 
3 
3.4 
3.5 
3.7 

-4.85642 
-5.49467 
-10.0079 
-10.8355 
-10.8349 
-10.485 
-8.73623 
-7.84112 
-- 

-0.233179 
-0.315626 
-0.973871 
-1.43789 
-1.54003 
-1.92638 
-2.88249 
-3.37017 
-- 

-0.0944631 
-0.0632616 
-0.012471 
-0.00789904 
-0.00738006 
-0.00608965 
-0.00482672 
-0.00457124 
-0.00411656 

0.704286 
0.705099 
1.45548 
2.08763 
2.2402 
2.87567 
-- 
-- 
-- 

4.47978 
5.12296 
9.53875 
10.1937 
10.1421 
9.54182 
-- 
-- 
-- 

 

Table 6 shows, as usual, the inhibiting action of the magnetic field for both clockwise and counterclockwise motions. The thermal 
Rayleigh number greatly enhances the flow intensity. The heat transfer decreases for increase in magnetic field in the 
counterclockwise motion in much more appreciable rate than that of clockwise motion. At � ≥ 2, depending on the thermal 
Rayleigh number, no real solution exist for the stream function for the Ѱ�,� branch. Our numerical computations show that the 

asymptotic branch, Ѱ�,�, of the flow induce nearly a constant heat and mass transfer rate for all thermal Rayleigh number, 
��	examined and when � = −2, the purely diffusive state (�� = 1 and �ℎ = 0.666667) is achieved.   
 

Table 6. Influence of magnetic field and thermal Rayleigh number on the stream  function and 
Heat and mass transfer for �� = ��, � = −�, � = �.�, and � = �.� 

 

          
�� 

             
�  

                    � = 0.5                                                       � = 0.5 
Ѱ�,� �� �ℎ Ѱ�,� �� �ℎ 

10 0 
0.5 
2 
5 

-3.54727 
-3.09767 
-0.769 
-0.047985 

4.19988 
3.76802 
1.30446 
1.00597 

10.19988 
10.6591 
6.91718 
2.04046 

3.13701 
2.64969 
-- 
-- 

2.55542 
2.24231 
-- 
-- 

10.8768 
10.5928 
-- 
-- 

20 0 
0.5 
2 
5 

-5.23628 
-4.63685 
-1.89448 
-0.0690419 

5.31049 
5.00094 
2.40359 
1.00912 

11.4466 
11.312 
9.43538 
2.15425 

4.8823 
4.27057 
-- 
-- 

3.47355 
3.19043 
-- 
-- 

11.4366 
11.2968 
-- 
-- 

50 0 
0.5 
2 
5 

-8.45521 
-7.53932 
-3.54727 
-0.68601 

6.07938 
5.05874 
4.19988 
1.25045 

11.7756 
11.7202 
10.9164 
6.61823 

8.12716 
7.20725 
3.13701 
-- 

4.44582 
4.24028 
2.55542 
-- 

11.7735 
11.7172 
10.8768 
-- 
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Conclusion 
 
Natural convection of a binary fluid saturating a horizontal porous medium under the influence of radiation and magnetic field is 
investigated and their effect on the strength of the convection |Ѱ�|, the heat transfer, ��, and mass transfer, �ℎ, are predicted using 
the parallel flow approximation technique and discussed accordingly. Consequently in the presence of cross fluxes of heat and 
mass, we make the following remarks: 
 
(i) For positive values of, � when the vertical solutal gradient is stabilizing the flow pattern is characterized by the existence of 

clockwise and counterclockwise convection which depends strongly on the magnitude of �� , � and �. For relatively low 
values of ��, the intensity of the flow pattern decreases. Upon increasing �� the flow intensity increases. The critical radiation, 
���, value for unstable convection depends on ��. The flow intensity is generally inhibited by the electromagnetic force.  

(ii) In the case for pure thermal convection, increasing the  thermal Raleigh number increases the flow intensity, while increase in 
the magnetic field decreases the flow intensity. The cross fluxes aid the clockwise motion but decrease the counterclockwise 
motion. Increasing the vertical gradient of heat enhances flow intensity.  

(iii)For negative values of �, the vertical solutal gradient is destabilizing. Increasing the vertical gradient of heat increases the 
flow intensity. Increased magnetic field decreases the flow intensity and rate of heat transfer but enhances mass transfer. Both 
clockwise and counterclockwise flow intensity induce, nearly, the same rate of mass transfer under the action of magnetic 
field. The asymptotic branch of the flow intensity induce nearly a constant heat and mass transfer for all thermal Rayleigh 
number, �� and when � = −2, the purely diffuse state is achieved. Again the critical radiation ��� value for unstable flow as 
determined in this study depends on the thermal Rayleigh number, ��.  

 
While the result presented here were obtained for a rather idealized geometry, we expect our qualitative findings to be more widely 
applicable. From a particular point of view, the key implication of our result is that when simulating geothermal system where the 
onset of convection may substantially increase the heat flux in the system, our result suggest that magnetic stabilization on the 
process could be very important. Consistent with the observation of Trevesan and Bejan (1986), Liu et al (2008) we note, in 
general, that the average Nusselt number are less in the opposing flow area than for the corresponding  aiding flow range due to the 
fact that the opposing flow has a lower rate adjacent to the sink than the corresponding aiding flow case.  
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