

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 6, Issue, 11, pp.10025-10029, November, 2014 **INTERNATIONAL JOURNAL OF CURRENT RESEARCH**

RESEARCH ARTICLE

RISK FACTORS OF TYPHOID FEVER AMONGST PATIENTS IN THE ALLAHABAD REGION, INDIA

^{1,*}Ausama Abed Alkadhum Alajeely, ²Rubina Lawrence, ³Ebenezer Jeyakumar and ⁴Navodita G. Maurice

¹ Department of General Science, Babylon University, Iraq ^{2,3}Department of Microbiology and Fermentation Technology, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Naini, Allahabad-211007 ⁴Department of Biological Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Naini, Allahabad-211007

ARTICLE INFO	ABSTRACT		
Article History: Received 20 th August, 2014 Received in revised form 16 th September, 2014 Accepted 21 st October, 2014 Published online 30 th November, 2014	252 blood samples collected from patients of different localities of Allahabad region were found to be positive for typhoid fever when tested by Widal test. The causative agent <i>Salmonella</i> species were cultured from the blood samples and then were identified by using standard procedures. The isolates were identified as <i>S. typhi, S. paratyphiA, S. typhimurium</i> and <i>S. bongori</i> . Age, socio-economic status and seasonal variations were identified as significant risk factors associated with incidence of <i>Salmonella</i> infection. Blood samples were collected from both males and females belonging to the		

Key words:

Molecular identification. Risk factors, Salmonella typhi, Typhoid fever, Widal test

age groups from <1 to 50 years where the infection rate of typhoid fever was found to be higher among children. Socio-economic strata showed difference in incidence of Salmonella species with the low category showed highest number of isolates. Peak period of typhoid fever was found in June while a lower peak was noted in the month of November.

Copyright © 2014 Ausama Abed Alkadhum Alajeely et al. This is an open access article distributed under the Creative Commons Attribution License, which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Typhoid fever is a common bacterial disease occurring worldwide. It is a serious systemic disease, spreading via faecal-oral route (Crump et al., 2004). According to a survey conducted by WHO, the annual global burden of typhoid is of 22 million new cases, reported every year among which 5% are fatal (Ivanoff, 2003). The disease is characterized by the onset of prolonged high fever, severe headache, malaise and abdominal pain (Dutta et al., 2000). The illness often causes diarrhea, especially in younger children, whereas constipation is common in older children and adults (WHO, 2003). PCR amplification of the bacterial DNA from blood of the commonly available diagnostic tests, Widal test and other serological diagnostic methods are limited because of the low specificity of the test. There are reports of a large number of false-positive cases especially in areas where typhoid fever is endemic and in patients exposed to typhoid fever earlier (Clemens et al., 1999). The risk factors of enteric fever include age, educational status of parents, consumption of street vendor's food, water intake, history of contact with patient of

*Corresponding author: Ausama Abed Alkadhum Alajeely General Science Department, Babylon University, Iraq

enteric fever in family and availability of Dispensary Facility (Ayaz et al., 2007). The highest attack rate occurs in children aged 8-13 years. Older people appear to be relatively immune, presumably because of frequently reinforced acquired immunity through numerous sub-clinical exposures to S. typhi (Parry et al., 2005).

The occurrence of infections was common in summer months (rainy season) (Prajapati et al., 2008). In the present study we determined the prevalence of the different species of Salmonella and also accessed various risk factors associated with typhoid infection.

MATERIALS AND METHODS

A total of 252 samples of peripheral blood positive for Widal test (Rapid slide test) were collected from patients attending OPD at local hospitals in Allahabad, India, during March 2011 to February 2012. Age, sex, malaise, headache, diarrhea, chills, anorexia, vomiting, abdominal pain, rash, etc. of each patient was recorded in a predesigned performa in sterile vials containing 10% sodium citrate.

Bacterial Isolation

An aliquot of 1 ml was inoculated in Brain Heart Infusion and incubated at 37° C for 24 hours. Positive broths were sub cultured on S-S agar and MacConkey agar and kept overnight at 37° C. The colonies showing typical characters were isolated for morphological and biochemical identification (Ewing *et al.*, 1986). The second portion of the sample was used for serological identification by the Widal test.

Widal Test

Three milliliters of the blood samples were centrifuged at a (6000 rpm) for 5 min. in order to separate the serum from the blood cells. The test was carried out using Beacon Diagnostics febrile antigen kit (India). The rapid slide screening test was first carried out, followed by the tube agglutination test according to the manufacturer's specifications. All the positive results were subjected to the tube agglutination test (Olopoenia *et al.*, 2000).

Biochemical Identification

The bacterial colonies on inoculated plates were identified on the basis of cultural, morphological and biochemical characteristics. Colony's characteristics like colony size, type of margin, elevation, texture and color of the colonies on S- S Agar and MacConkey Agar were recorded. The isolates were then processed for IMViC test, urease test, catalase Production, motility test, gelatin liquefaction, triple sugar, carbohydrate fermentation and decarboxylase test (Brenner *et al.*, 2005).

Molecular Identification

The isolates identified on the basis of morphological and biochemical characteristics were further confirmed by molecular screening (Massi *et al.*, 2005).

Isolation of Genomic DNA

Genomic DNA from the cultured bacteria in 200 μ l of Tris-EDTA (TE) buffer for PCR was extracted according to the instructions given in GeneiUltrapureTM Bacterial Genomic DNA Purification kit (HiMedia Labs, Mumbai). The purity of the extracted DNA was checked by measurement of A260 and by agarose gel electrophoresis.

The PCR Mix Composition

The bacterial DNA extract and control was amplified using 0.5 μ M primers 16S rDNA fragment. The PCR mixture (50 μ l) contained bacterial DNA, PCR buffer [10 mMTris/HCl (pH 8.3), 50 mM KCl, 3 mM MgCl, and 0.01% gelatin], 200 μ M of each dNTP, and 1.0 U AmpliTaq Gold enzyme. The mixtures were amplified using *Taq* DNA polymerase. for 35 cycles at 94°C for 1 minute, 55°C for 1 minute, and 72°C for 2 minutes, with a final extension at 72°C for 10 minutes in an automated thermal cycler. An aliquot of 10 μ l of each amplified product was electrophorese in 2% (wt/vol) agarose gel, with a DNA Molecular Weight Marker (StepUpTM500bp DNA ladder) in parallel (Massi *et al.*, 2005).

DNA Sequencing

The PCR product was sequenced using forward, reverse and internal primer. Sequence data was aligned and analyzed with the filter option for *Salmonella* in the nucleotide BLASTN programme (Altschul *et al.*, 1990). The PCR products were loaded on 1.0% agarose gel along with StepUpTM500bp DNA ladder.

RESULTS

A total of 252 patients were selected for the study and on the basis of the information collected in predesigned performa129 were male and remaining 123 were female patients. Majority of the patients showed characteristic symptoms of typhoid fever (Table 1).

 Table 1. Epidemiological features in patients clinically diagnosed for typhoid

S. No.	Parameters	Salmonella infected patients			
5. INO.	Parameters	Male n=129	Female n=123		
A. Previo	us History				
1.	Vaccination	2 (1.55)	0 (0.00)		
2.	Onset of symptoms	127 (98.44)	119 (96.74)		
3.	Previous enteric fever	17 (13.18)	10 (8.13)		
4.	Previously known	12 (9.30)	9 (7.31)		
	Typhoid carrier				
5.	Antibiotic use	42 (32.56)	54 (43.90)		
B. Sympto	oms				
1.	Fever	117 (90.69)	118 (95.93)		
2.	Malaise	78 (60.46)	71 (57.72)		
3.	Headache	59 (45.73)	61 (49.59)		
4.	Diarrhoea	59 (45.73)	51 (41.46)		
5.	Chills	71 (55.03)	77 (62.60)		
6.	Anorexia	66 (51.16)	62 (50.40)		
7.	Vomiting	16 (12.40)	30 (24.39)		
8.	Abdominal Pain	57 (44.18)	56 (45.52)		
9.	Rash	4 (3.10)	1 (0.81)		

*Figures in parenthesis indicate percentage

Of the 252 blood samples, 167 (66. 26%) were tested positive by Widal test and 51 of 167 (30.53%) showed positive cultures for Salmonella. On the basis of the morphological and biochemical characteristics of the colonies obtained on S-S agar and MacConkey agar, four Salmonella species were identified viz. S. typhi, S. paratyphi A, S. typhimurium and S. bongori. The prevalence of the individual species corresponded to 52.94% for S. typhi, 27.45% for S. paratyphi A, 15.68% for S. typhimurium and 3.92% for S. bongori. One isolate each from the Salmonella spp. identified on the basis of cultural, morphological and biochemical characteristics was further identified according to the molecular weight of the base pairs. The amplified PCR products carried out using universal bacterial 16S rRNA primers and visualized by UV illumination showed the expected bands of about 1500 bp (Fig. 1). The results demonstrated correct genus identification of examined Salmonella isolates.Based on nucleotides homology and phylogenetic analysis, the isolates samples were detected to Salmonella enteric 27(52.94%), Salmonella sp. 14(27.45%), Salmonella typhimurium 8(15.68%) and Salmonella bongori 2(3.92%). Distribution of patients on the basis of their age revealed maximum number of subjects to fall in the age group of 11-15 years. Out of the total number of positive samples, maximum incidence was recorded in the age group of 41-45

Table 2. Incidence of Salmonella spp. with respect to age

				Salmonella spp.			
Age (Years)	Total number of blood samples N=252	Total number of positive samples N=167	Total number of positive culture N=51	Salmonella enterica	Salmonella species	Salmonella Typhimurium	Salmonella bongori
<1	10	7	4 (7.8)	1 (3.7)	1 (7.1)	2 (25.0)	0 (0.0)
1 - 5	23	15	7 (13.8)	2 (7.4)	3 (21.5)	2 (25.0)	0 (0.0)
6 - 10	27	17	8 (15.7)	4 (14.8)	3 (21.5)	0 (0.0)	1 (50.0)
11 - 15	32	19	8 (15.7)	7 (26.0)	0 (0.00)	1 (12.5)	0 (0.0)
16 - 20	21	17	6 (11.8)	4 (14.8)	1(7.1)	1 (12.5)	0 (0.0)
21 - 25	24	13	2 (3.9)	0 (0.0)	0 (0.00)	1 (12.5)	1 (50.0)
26 - 30	22	16	4 (7.8)	2 (7.4)	2 (14.3)	0 (0.0)	0 (0.0)
31 - 35	20	8	1 (2.0)	1 (3.7)	0 (0.00)	0 (0.0)	0 (0.0)
36 - 40	26	19	5 (9.8)	3 (11.1)	2 (14.3)	0 (0.0)	0 (0.0)
41 - 45	25	21	4 (7.8)	3 (11.1)	1(7.1)	0 (0.0)	0 (0.0)
46 - 50	22	15	2 (3.9)	0 (0.00)	1 (7.1)	1 (12.5)	0 (0.0)

*Figures in parenthesis indicate percentage

Table 3. Incidence of Salmonella spp. with respect to socio-economic status

Socio-economic status	Total number of blood samples N=252	Total number of positive samples n=167	Total number of positive culture N=51	Salmonella spp.			
				Salmonella enterica	Salmonella sp.	Salmonella Typhimurium	Salmonella bongori
Low	118	77 (46.11)	30 (58.8)	16 (59.3)	8 (57.1)	5 (62.5)	1 (50.0)
Middle	89	51 (30.54)	13 (25.5)	6 (22.2)	4 (28.6)	2 (25.0)	1 (50.0)
High	45	39 (23.35)	8 (15.7)	5 (18.5)	2(14.3)	1 (12.5)	0 (0.0)

*Figures in parenthesis indicate percentage

years and least in patients of < 1 years of age (P<0.01). In patients tested positive for *Salmonella* by culture method belonged to the age groups of 6-10 and 11-15 years with significantly higher incidence of the disease (P<0.01) (Table 2). The distribution pattern of *Salmonella* spp. in the study group with respect to gender showed a higher incidence in male patients as compared to female patients in the samples found positive by Widal test and culture methods but the difference was found to be statistically non-significant (P>0.05) (Fig. 2).

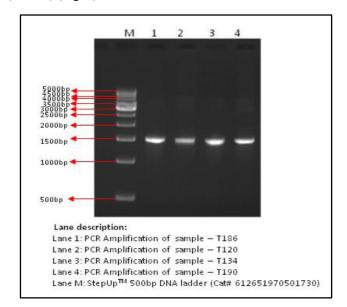


Figure 1. Gel electrophoresis of PCR amplification of *Salmonella* species

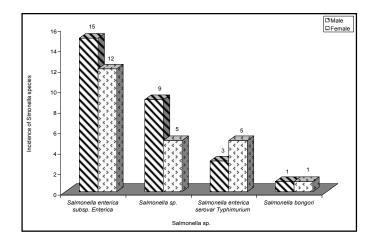


Figure 2. Incidence of *Salmonella* spp. isolates with respect to sex of patients

Majority of the patients selected for the study belonged to the lower socio-economic strata (Table 3). Significant difference was observed in the incidence of *Salmonella* spp. being highest in the lower socio economic group and least in the higher socio-economic population (P<0.01). The monthly distribution of number of samples positive for *Salmonella* spp. on the basis of Widal test collected during March 2011 to Feb 2012 showed maximum number of samples (16.7%) collected during the month of June were positive followed by 11.3% and 10.7% samples collected during the months of May and July as positive. Lower incidence was recorded during winters from November to February (4.2-5.9%) (Fig.3). The data were found to be significant at 5% and 1% levels of significance.

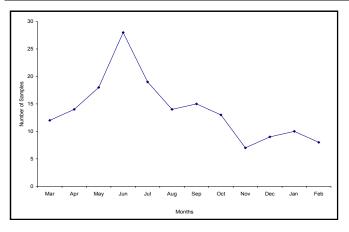


Figure 3. Distribution of positive samples collected during the months March 2011 to February 2012

DISCUSSION

In our study 252 subjects were selected for the analysis of onset of symptoms of typhoid fever and we found that majority of patients showed symptoms of fever, malaise, chills, anorexia and headache and our results were found to be in quick agreement with the study of Ackers et al. (2000) who also reported that fever was the most frequent symptom followed by malaise in their study conducted in United States from June 1996-May 1997. Diagnosis of typhoid fever was done by isolating the causative bacteria from the patients most often from blood, but also from urine, stool, or bone marrow. Infected persons can develop sustained fever of up to 104°F (40° C), weakness, stomach pain, and headache. However, a rash (rose spots) may also accompany the infection (Huang et al., 2009). In our study 66.26% samples were tested positive by Widal test while 20.23% were found to be culture positive for Salmonella species. Manga et al. (2006) found 84.3% and 25.9% samples as positive by Widal test and cultural methods however, only 3.2% samples were found culture positive for Salmonella in the study of Peletiri and Ibecheozor (2012).

The first evaluation conducted by Song et al. (1993) by using PCR as a diagnostic tool for typhoid fever. A molecular method for the detection of Salmonella serovars in specimens appears to be an attractive addition to current methods. However, PCR is not commonly reported for the routine identification of Salmonella (Ali et al., 2009). In our study PCR amplification was used for the detection of Salmonella sp. and 27 (52.94%) for Salmonella enterica, 14 (27.45%) for Salmonella sp., 8(15.68%) for Salmonella typhimurium and 2 (3.92%) for Salmonella bongori positive results were obtained while, Kumar et al. (2008) found 140 (80%) patients infected by Salmonella enteric subspecies enterica serovar Typhi and 16(9%) by Salmonella serovar Paratyphi A and remaining 11% were infected by other S. enterica serogroups, typhimurium, Paratyphi C and other group E Salmonella in their study conducted in north India .Majority of the subjects falling in the age groups of 6-10 and 11-15 years were tested positive for Salmonella spp. in our study and our observations are comparable with the findings of Ekdahl et al. (2005) who found that the highest individual risk for paratyphoid fever lies in the age group of 7-18 years, followed 19-45 years.

Bhutta *et al.* (1996) and Walsh *et al.* (2000) found the peak incidence of *Salmonella* sp. among children of 5-15 years of age. However, Breiman *et al.* (2012) reported maximum incidence among children of 2-4 and 5-9 years age group. Ochiai *et al.*, (2008) reported in their multicentric trial that the mean age of typhoid was significantly lower in south Asian sites as compared to the South East and North East Asian sites and suggested that is an inverse correlation between typhoid incidence and mean age of patients.

According to De Las Casas et al. (1999) teenagers and young adults have a more adventurous lifestyle and are therefore, they are at higher risk for food borne diseases as contaminated food from restaurants and street vendors is the main transmission route for paratyphoid fever. A higher probability of Salmonella infection was found among males as compared to females in our study and similar findings have been found in the studies of Ayaz et al. 2006 and Prajapati et al. 2008. This could be because of greater exposure to infection due to the occupation and food habits of men as explained by Khan et al. (1999). Ekdahl et al. (2005) however, reported that gender is not a risk factor for enteric fever and so is not in agreement with our study. A higher incidence of Salmonella infection was recorded in patients belonging to lower socio-economic strata and our finding is in agreement with the findings of Vollaard et al. (2004) who found that typhoid fever is more frequent among the people of a lower income category. Kothari et al. (2008) stated that typhoid fever is a disease of developing countries associated with poor public health and low socioeconomic indices. Abera et al. (2009) reported that majority of food handlers are responsible for transmission of Salmonella infection with low educational levels.

Our study is in accordance with the study of Ekdahl et al. (2005) who also reported that both typhoid and paratyphoid fevers have a seasonal pattern with a distinct risk peaking in June. The seasonal pattern was marked with disease peakin summer and the dry season in the highly endemic areas. In a study conducted by Vollaard et al. (2004) and Lin et al. (2000) in Indonesia and Vietnam a higher local risk of typhoid and paratyphoid fevers was seen during the dry season however, Sinha et al. (1999) reported peak incidence of typhoid fever during the monsoon season *i.e.* from July to November. Prajapati et al. (2008) suggested contamination of drinking water and environment with faecal matter is the possible reason for increased incidence of the disease during the rainy season. A study conducted by Mohanty et al. (2006) in Delhi, reported maximum incidence between April to June and stated that the streets in the city become flooded with rainwater contaminated with overflow of sewage due to non-existent or insufficient sewerage system.

Acknowledgement

The authors are grateful to the Head, Department of Microbiology and Fermentation Technology, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Naini, Allahabad, India for constant encouragement and providing essential laboratory facilities.

REFERENCES

- Abera, B., Biadegelgen, F. and Bezabih, B. 2010.Prevalence of *Salmonella typhi* and intestinal parasites among food handlers in Bahir Dar Town, Northwest Ethiopia. *Ethiop. J. Health. Dev.*; 24: 46-50.
- Ackers, M.L., Puhr, N.D., Tauxe, R.V. and Mintz, E.D.2000. Laboratory based surveillance of *Salmonella* serotype Typhi infections in the United States: antimicrobial resistance on the rise. JAMA., 283:2668-2673.
- Ali, A., Haque, A., Sarwar, Y., Mohsin, M., and Bashir, S.2009.Multiplex PCR for differential diagnosis of emerging typhoidal pathogens directly from blood samples. *Epidemiol Infect.*, 137(1):102-107.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool.*J. Mol. Biol.*, 215: 403-10.
- Ayaz, A., Pervaiz, M.K., Azad, M.D. and Pervaiz, G. 2006. Risk factors of enteric fever in children less than 15 years of age. J. Statist., 13:84-100.
- Bhutta, Z.A., Punjwani, N. and Lindblad, B.S. 1996. Concomitant bacteremia as a risk factor in diarrheal disease mortality; a case control study of hospitalized children. *Acta Paediatr.*, 85: 809-813.
- Breiman, R.B., Cosmas, L., Njuguna, H., Audi, A., Olack, B. and Ochieng J.B. 2012.Population based incidence of typhoid fever in an urban informal settlement and a rural area in Kenya: Implication for typhoid vaccine see in Africa. Plos ONE., 7: 1-10.
- Brenner, D.J. and Farmer, I.J.J. 2005.Family Enterobacteriaceae. In Bergey's Manual of Systematic Bacteriology, 2ndEdn,, The Gamma proteobacteria(edited by Garrity GM, Brenner DJ, Krieg NR and Staley JT). Springer, New York. pp.587-607.
- Clemens, J., Hoffman, S., Ivanoff, B., Klugman, K., Levine, M.M. and Neira, M. 1999.Typhoid fever vaccines. Vaccine., 17: 2476–2478.
- Crump, J.A., Luby, S.P. and Mintz, E.D. 2004. The global burden of typhoid fever. Bull. *W.H.O.*, 82: 346-353.
- De Las Casas, C., Adachi, J. and Dupont, H. 1999. Review article: traveller's diarrhoea. Aliment. Pharmacol. Ther., 13:1373-1378.
- Dutta, U., Garg, P.K., Kumar, R. and Tandon, R.K. 2000.Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. *Am. J. Gastroenterol.*, 95: 784-787.
- Ekdahl, K., De Jong, B. and Andersson, Y. 2005. Risk of travel associated typhoid and paratyphoid fevers in various regions. J. Travel. Med., 12: 197-204.
- Ewing, W.H. 1986. The genus of *Salmonella*. Edwards and Ewing identification of the Enterobacteriaceae. differentiation of enterobacteriaceae by biochemical reactions. 4th Ed., Elsevier Science Publishing Co., New York.pp.181-245.
- Huang, Z., Sutton, S.E., Wallenfang, A.J., Orchard, R.C., Wu, X. and Feng, Y.2009.Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat. Struct. Mol. Biol., 16: 853-860.
- Ivanoff, B.C. 2003. The diagnosis, prevention, and treatment of typhoid fever. (WHO) Geneva, Switzerland. pp. 1-30.

- Khan, M., Coovadia, Y.M., Connolly, C. and Sturm, A.W. 1999.Influence of sex on clinical features, laboratory findings and complications of typhoid fever. *Am. J. Trop. Med. Hyg.*, 61:41-46.
- Kothari, A., Pruthi, A. and Chugh, T.D. 2008. The burden of enteric fever. J. Infect. Dev. Ctries., 2: 253-259.
- Kumar, S., Rizvi, M. and Berry, N. 2008.Rising prevalence of enteric fever due to multidrug resistant *Salmonella*: an epidemiological study. *J. Med. Microbiol.*, 57: 1247-1250.
- Lin, F.Y., Vo, A.H., Phan, V.B., Nguyen, T.T., Bryla, D. and Tran, C.T. 2000. The epidemiology of typhoid fever in the Dong Thap Province, Mekong Delta region of Vietnam. *Am. J. Trop. Med.Hyg.*, 62: 644-648.
- Manga, S.B., Ameh, I.G., Bashir, S., Muazu, A.G., Danjuma, B. and Ibrahim, M.L. 2008. Antibiotics susceptibility of *Salmonella* isolates from Widal test positive patients at the Federal Medical Center, Gusau. *Jos J Med.*, 5: 123-129.
- Massi, M.N., Shirakawa, T., Gotoh, A., Hatta, M. and Kawabata, M.2005.Identification and sequencing of *Salmonella enteric* serotype Typhi isolates obtained from patients with perforation and non-perforation Typhoid fever. Southeast. Asia. J. Trop. Med. Public. Health, 36:118-122.
- Mohanty, S., Renuka, K., Sood, S., Das, B.K. and Kapil, A. 2006. Antibiogram pattern and seasonality of *Salmonella* in a North Indian tertiary care hospital. Epidemiol Infect., 134: 961-966.
- Ochiai, R.L., Acosta, C.J. and Danovaro-Holliday, M.C. 2008. A study of typhoid fever in five Asian countries: disease burden and implications for control. *Bull World Health Organ.*, 86: 260-68.
- Olopoenia, L.A. and King. A.L. 2000. Widal agglutination test 100 years later: still plagued by controversy. *Postgrad. Med. J.*, 76: 80–84.
- Parry, C.M., Tran, T.H., Gordon, D., Nicholas, J.W. and Jeremy, J.F. 2005. Medical progress: Typhoid fever. *New Eng. J. Med.*, 347: 32-59.
- Peletiri, I.C. and Ibecheozor, N.K.O. 2012. The a etiology of enteric fever in Abuja, North Central, Nigeria. Afr. J. Clin. Exp. Microb., 13: 150-155.
- Prajapati, B., Rai, G.K., Rai, S.K., Upreti, H.C., Thapa, M. and Singh, G. 2008.Prevalence of *Salmonella typhi* and *paratyphi* infection in children; a hospital based study. Nepal. *Med. Coll. J.*, 10: 238-241.
- Sinha, A., Sazawal, S. and Kumar, R. 1999. Typhoid fever in children aged less than 5 years. Lancet., 354: 734-37.
- Song, J.H., Cho, H., Park, M.Y., Na, D.S., Moon, H.B. and Pai, C.H. 1993. Detection of *Salmonella typhi* in the blood of patients with typhoid fever by polymerase chain reaction. *J. Clin. Microbiol.*, 31:1439-1443.
- Vollaard, A.M., Ali, S. and Van Asten, H. A. 2004. Risk factors for typhoid and paratyphoid fever in Jakarta, Indonesia, JAMA.,291: 2607-2615.
- Walsh, A.L., Phiri, A.J. and Graham, S.M. 2000. Bacteremia in febrile Malawian children: clinical and microbiologic features. *Pediatr. Infect. Dis. J.*, 19: 312-318.
- World Health Organization (WHO). 2003. The diagnosis, treatment and prevention of typhoid fever. Communicable Disease Surveillance and Response Vaccine and Biological. pp. 7-18.