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INTRODUCTION 
 
The use of renewable resources in polymer production has 
gained increasing attention due to concerns over the depletion 
of petroleum reserves, rising carbon footprints, and stringent 
environmental regulations promoting sustainability in 
industrial processes (1). Epoxy resins, specifically diglycidyl 
ether of bisphenol A (DGEBA), have been widely used as 
thermosetting materials due to their excellent chemical 
resistance and adhesive properties. They are utilized in a 
variety of applications, including adhesives, coatings, and 
paints. However, their inherent poor impact resistance and 
susceptibility to stress cracking limit their
many applications (2). Various methods have been explored to 
improve the flexibility of epoxy resins, such as introducing 
flexible structures like rubbers, thermoplastics, silica, and glass 
beads into the rigid epoxy backbone, or by lower
functionality of the curing agents (3). In response to the 
growing concern over reducing CO2 and other greenhouse gas 
emissions, researchers have turned to modifying epoxy 
materials by incorporating vegetable oil-based prepolymers 
(4). Cashew nutshell liquid (CNSL), derived from 
occidentale, is a renewable biomaterial and an abundant 
natural source of phenols from non-food-chain resources. 
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tetraethylene tetramine was compared using differential scanning calorimetry (DSC) at various 
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Kissinger methods. The two-parameter (m, n) Sestak-Berggren autocatalytic model was identified as 
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CNSL contains four major components with unsaturated C15 
chains: cardanol, cardol, anacardic ac
Phenalkamine, a curing agent synthesized from cardanol, is 
produced via a condensation reaction with formaldehyde and 
polyamines (5,6). The aromatic backbone of phenalkamine 
enhances the rigidity of the epoxy network, while its alip
side chains improve flexibility and extend pot life when used 
as a hardener. Additionally, the phenolic
phenalkamine highly reactive even at low temperatures, and 
the amine side chains contribute to the high cross
density (6,7,8). The structure of the phenalkamine material is 
shown in Figure 1. 
 

Figure 1. Chemical structure of phenalkamine
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as a hardener. Additionally, the phenolic-OH groups make 
phenalkamine highly reactive even at low temperatures, and 
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The study of curing kinetics provides crucial insights into the 
structure-property-processing relationships of epoxy systems. 
Numerous researchers have investigated and modeled the 
curing kinetics of epoxy resins using non-isothermal 
differential scanning calorimetry (DSC) scans (9). Zvetkov 
(2001) modeled the non-isothermal reaction kinetics of 
diglycidyl ether of bisphenol A (DGEBA) with m-phenylene 
diamine (mPDA) using isoconversional methods (10). 
Similarly, Yao et al. studied the curing behavior of DGEBA 
with hyperbranched poly(3-hydroxyphenyl) phosphate (HHPP) 
as the curing agent and found that the flexible groups present 
in HHPP enhanced the reaction rate and lowered the activation 
energy (11). The two-parameter autocatalytic model, 
represented by the Sestak-Berggren equation, was found to 
best describe the cure kinetics of the system across different 
heating rates. Sultania et al. also explored the cure kinetics of a 
vinyl ester-styrene system, concluding that the two-parameter 
(m, n) autocatalytic model was most suitable for describing the 
curing behavior through the isoconversional method (12). The 
cure kinetics of epoxy/phenalkamine systems has not been 
extensively documented in the literature, despite its increasing 
use in low-temperature epoxy curing across various 
applications. This paper presents an analysis of the kinetic 
parameters of the epoxy/phenalkamine system, including 
reaction order, activation energy, and kinetic rate constants. 
Additionally, the effects on mechanical properties are 
evaluated and compared with those of the epoxy/polyamine 
network. 
 
Experimental 
 
Materials: Phenalkamine (PKA) with an amine value of 490-
550 mg KOH/g and a density of 0.99 g/cm³ was sourced from 
Cardolite Specialty Chemicals India Pvt. Ltd., Mangalore, 
India. The epoxy resin, supplied by Huntsman Advanced 
Materials, had an epoxy equivalent weight of 183-189 g/eq and 
a density of 1.17 g/cm³. Triethylenetetramine (TETA), also 
obtained from Huntsman Advanced Materials (India) Pvt. Ltd., 
had an amine value of 1443 mg KOH/g. 
 
DSC Measurements: A NETZSCH DSC 200F3 instrument 
was employed to investigate the comparative curing 
characteristics of thermoset material systems. The 
Epoxy+PKA and Epoxy+TETA mixtures were prepared in 
stoichiometric ratios of 10:3 and 10:1, respectively, at room 
temperature and stored at −20°C. Weighed samples (15 mg) 
were placed in the DSC cell and analyzed using three different 
constant heating rates. Pure indium was used as a standard for 
calibration, and an identical empty aluminum hermetic pan 
served as the reference. 
 
Physical and Mechanical Properties: The densities of all 
samples were measured using a precision balance and 
determined by Archimedes’ principle of buoyancy. The 
density data for all materials prepared in this study are 
presented in Table 4. Tensile tests were performed in 
accordance with ASTM D 638 using an Instron Universal 
Testing Machine. The tests were conducted at a crosshead 
speed of 5 mm/min in a room temperature environment. The 
specimens had dimensions of 162 mm × 12 mm × 3.5 mm. 
Notched impact strengths were measured using an impact 
pendulum tester, following ASTM D 256 standards. The 
dimensions of the samples were 64 mm × 13 mm × 3 mm. The 
impact strength (kJ/m²) was calculated by dividing the 
absorbed impact energy by the cross-sectional area of the 

samples. Flexural tests were conducted as per ASTM D 790 
using the Instron Universal Testing Machine. The tests were 
performed at a crosshead speed of 5 mm/min in a room 
temperature environment, with specimens measuring 60 mm × 
10 mm × 4 mm.Three measurements were taken for each 
specimen, and the average values are reported in Table 4. 
 
Theoretical Background of Cure Kinetics Studies Using 
DSC: Non-isothermal measurements involve applying a 
thermal gradient to the sample at various constant heating rates 
across a specified temperature range. In Differential Scanning 
Calorimetry (DSC), the difference in heat required to raise the 
temperature of the sample compared to the reference is 
measured as a function of temperature. The temperatures of the 
sample and reference are maintained equally throughout the 
experiment. As the thermoset material cures, it generates 
exothermic heat, and the differences in heat flow rates between 
the sample and reference are recorded over time and 
temperature. The rate of reaction (dα/dt) was assumed to be 
proportional to the rate of heat generation and mathematically 
expressed as follows (13). 
 

α Eq-1 
 
The degree of cure (α) ranges from 0 (completely uncured) to 
1 (fully cured) and is defined as (17, 18, 19, and 20) follows: 
 

Eq-2 
 

Where = degree of cure at time t. 
H(t) = Heat generated up to time t. 
H (T) = Total heat of reaction. 
 
It was also assumed that the rate of reaction (dα/dt) can be 
defined by two separable functions       K (T) and f (α) and 
mathematically expressed as follows. 
 

=K (T).f (α)Eq-3 
 
Where dα/dt is the rate of reaction, K (T) is the temperature 
dependent rate constant,and f (α) corresponds to the reaction 
model. The temperature dependence of thereaction rate is 
generally defined through an Arrhenius expression and 
represents mathematically as follows. (21, 22) 
 

K (T) =A exp ( )(Eq-4) 
 
Where Ea is the activation energy, A is the pre-exponential 
factor, R refers to the universal gas constant, and T 
corresponds to the absolute temperature. 
 
The Eq -3 and Eq-4 combined and expressed mathematically 
in logarithmic form as follows. 
 

ln ( ) =ln(A.f(α))-               (Eq-5) 
 
The Ea was determined from the slope of linear dependency 

between ln ( ) and using similar values of conversion at 
different heating rate using the equation-Eq-5 (12). The 
selection of f(α)were determined with the  introducing of  
special functiony (α) and z (α) as suggested by  Malek (14). 
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y (α)=  (Eq-6) 
 

z (α) =π (x)                             (Eq-7) 
 
Where x, β T and π(x) is the reduced activation energy 
(Ea/RT),heating rate (K min−1), absolute temperature (K), and 
the expressionfor temperature integral, respectively. The 
temperature π(x) was calculated using fourth rational 
expression given by Senumand Yang. (13, 15) 
 

π (x) =   (Eq-8) 
 
 The y (α) and z (α) functions were normalizedwithin 0to 1 
range and the maximum of y (α) function and z (α) function 
was used to choose most suitable kinetic model. The Kinetic 
parameters was calculated using the Kissinger method in 
which the activation energy and pre-exponential factor are 
assumed to be constant irrespective of different heating rate. It 
assumes the curing reaction is in first order by considering one 
data point for each heating rate that is the maximum 
temperature in DSC curve. (16) Kissinger equation 
mathematically represents as follows 
 

ln =ln -   (Eq-9) 
 
Where Tm is maximum temperature in DSC curve.By plotting 
ln (β/Tm2) verses 1/Tm the activation energy (Ea) and pre-
exponential factor (A) was estimated from the slope of the 
linear fit and the y-intercept respectively(17). 
 

RESULTS AND DISCUSSION 
 

 
Fig. 2. Heat flow vs temperature for Epoxy/PKA system 

 
Fig 3 shows the DSC curve of Epoxy/PKA system at three 
different heating rates of 5, 10, and 20 ◦K min−1.The cure 
reaction took place in one stage regardless of the heating rate 
in the studied temperature range.The maximum 
temperature(Tm) shifts to a higher temperature range with the 
increasing heating rate. Both initiation temperature (Ti) and 
final temperature (Tf) also increased with the increase of scan 
rates. A comparison of the values has been summarized in 
Table 1. It was observed from table1that the onset (Ti) 
temperature decreases with the addition of alkyl phenol due to 
may bephenolic hydroxyl groups weremore reactive compared 
amino hydrogen groups at lower temperature in opening 

epoxide rings. The final temperature (Tf) of the curing reaction 
shifts to higher side due to may beincreases of viscosity of the 
mixture restricting mobility of active hydrogens in epoxide 
ring opening.It was observed thattotal heat of reaction ∆H 
increases with higher heating rates. This reason for this could 
be attributed to a more complete curing at higher heating rate 
and measurement uncertainty in lower heating rate due to 
diffusion of small molecules.The total heat of reaction was 
found to be lower for Epoxy/PKA system compared to 
Epoxy/TETA system.The activation energy (Ea) and 
preexponential (ln A) was calculated according to Kissinger 
computational method and was found to be 52.85kJ/mol and 
3.34 s-1 respectively. 
 

 
 

Fig. 3. Fractional conversion as a function of temperature for 
Epoxy/PKA system 

 
Fig. 3 shows the variation of fractional conversion as a 
function of temperature at three different heating rates.The 
curves shows that the conversion increased very slowly in the 
initial stage and rose abruptly in the range of 65–1400C and it 
was almost constant in the final stage. The shape of the  was 
observed S-shape and shifted to right hand side due to may be 
in non-isothermal conditions K (T) and f (α) vary 
simultaneously with heating rate. Table 2 lists the values of 
maxima αM and α∞

P corresponding to the y (α) and z(α) for the 
Epoxy/PKA and Epoxy/TETA system together with αP taken 
as the maximum of DSC peak of each thermoset system.The 
values of αP found less than α∞Pfor both the systems while 
α∞Pshows less than 0.632. These values shows that the both 
systems could be represented by two-parameter autocatalytic 
kinetic equation of sestak-Berggren. (13,19,21)  
 
The sestak-Berggren equation was represented mathematically 
as follows 
 
f (α)=αm(1-α)n  (Eq-10) 
 
Where m and n are the kinetic exponents (18) The kinetic 

exponent n was calculated by linear fitting of ln ((dα/dt ) 
verses ln (αp (1-α)). 
 
The kinetic exponent m was calculated according to Eq-11. 
m=pn, where p=αM/(1-αM)(Eq-11) 
 
The pre-exponential factor A was calculated according to Eq-
12 
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A=  (Eq-12) 
 

Where the differential form of the kinetic model, αp is 
the conversion corresponding to maximum at DSC curve and p 
is the maximum of DSC curve. The kinetic exponents andpre 
exponentialfactor for both the systems was reported in Table 

3.The predicted reaction rate  was calculated 
according Eq-13 using previously calculated activation energy 
(Ea) and kinetic exponents (m,n) 
 

=A exp (  )αm (1-α) n  (Eq-13)  
 
It was observed from table no 3 by comparing activation 
energy, pre exponential factor and reaction order for both the 
systems found similar. Fig 4 showsvariation of activation 
energy (Ea) vs conversion (α) for both the systems. It was 
observed the activation energy in case of Epoxy/PKA was 
increasing with the extent of curing contrary to Epoxy/TETA 
system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reason for this behavior may be related tosteric hindrance 
created by longer side polymer chains present in molecular 
structure of phenalkamine(20).  
 
Mechanical behavior: Table 4 presents the elongation at 
break, flexural modulus, and impact strength for the 
Epoxy/PKA system, which are higher compared to the 
Epoxy/TETA system. These improvements are likely due to 
the long aliphatic carbon chains present in the phenalkamine 
molecular structure, which provide enhanced flexibility to the 
epoxy resin. Additionally, the improved mechanical properties 
may be attributed to better particle-to-particle adhesion, as the 
long side chains of phenalkamine create steric hindrance that 
reduces moisture absorption by hydroxyl and oxygen-
containing groups during curing. This enhanced adhesion may 
limit crosslinking, which is associated with a reduction in 
tensile strength. The proposed kinetic model was confirmed by 
plotting dα/dt (experimental) vs dα/dt (predicted) as explained 
in Eq 13 and shown in fig 5.The predicted curves shows higher 
deviation compared to experimental curves because of may be 
phenomenological models are unable to adequately define the 
complex cure behavior in the dynamic DSC measurements.  

Table 1. Curing characteristics of Epoxy/PKA and Epoxy/TETA system at different heating rates. 

 
Composition Heating rate(β) in 

◦C min−1 
Onset Temperature 
 (Ti) in0C 

Peak Temperature 
Tm(0C) 

Final Temperature 
Tf (◦C) 

Heat of 
Reaction, ∆ H (J g−1) 

EP+PKA 5 49.3 92.5 
 

148.564 79.48 

10 60.7 98.7 
 

151.791 138.59 

20 77.6 118.6 
 

173.661 104.17 

Epoxy+ TETA 5 56.7 107.5 113.4 214.40 

10 69.5 93.8 115.2 496.76 

15 70.2 101.9 138.7 494.24 

 
Table 2. The calculated values of αp, αM and α∞pof Epoxy/PKA and Epoxy/TETA systems 

 
Composition Heating rate,  

(◦C min−1) 
αp αM α∞p 

Epoxy+PKA 5 0.50677 0.0045 0.5642 

10 0.43746 0.08 0.4745 

20 0.44737 0.085 0.5101 

Epoxy+TETA 5 0.4968 0.1010 0.5154 

10 0.5596 0.3405 0.5897 

15 0.4459 0.2008 0.5065 

 
Composition Heating rate,  

(◦C min−1) 
Ea(KJ mol-1 ln  A Mean m mean n mean Overall 

m+n 
Epoxy +Phenalkamine 5  

 
60.27 

14.5  
14.71 

0.0059  
 
0.0614 

1.3045  
1.0958 

 
1.1572 10 15 0.0873 1.0041 

20 14.65 0.0910 0.9788 
Epoxy +TETA 5  

55.48 
12.18  

 
13.43 

0.1085  
 
0.2882 

0.9661  
1.009 

 
1.2972 10 14.2 0.4642 0.89892 

15 13.92 0.2920 1.162 

 
Table 4. Mechanical Properties of Epoxy/TETA and Epoxy/PKA Systems 

 
Composition Density in(gm/cm3) Tensile modulus  

in  (MPa) 
Elongation in 

(%) 
Impact strength in (kJ/m2) Flexural modulus 

Epoxy+TETA 1.50 975.73±78.17 5.39±1.99 13.68±0.01 2369.72±154 

Epoxy+PKA 1.45 938.77±50.87 8.88±2.57 
 

13.92±0.01 3739.43±351 
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The activation energy estimated from Kissinger method and 
through sestak-Berggren kinetic model was found similar, so 
both the model was capable for describe the studied thermoset 
system. 
 

 
Fig-5 Comparison of experimental and calculated DSC curves for 

epoxy/phenalkamine system 
 

CONCLUSION 
 
Cashew nut oil (CSNL) based phenalkamine can be utilized as 
a curing agentfor improving flexibility of epoxy resin. The 
kinetic exponents, pre exponential factor and activation energy 
obtained for both the curing agent was found similar. The 
values of Ea in theconversion interval between 0.2 and 0.8 
were increasing for Epoxy/PKA system. The curing reaction of 
the epoxy/phenalkaminesystem could be defined by a sestak–
Berggren equation. The impact, flexural and elongation 
property were improved with the addition of phenalkamine in 
epoxy resin. 
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