

REVIEW: A BEHAVIORAL ANALYSIS OF TCP VARIANTS FOR MANET
*1Deepika Ratnawat and

1Student of Computer Science,
2Lecturer of Computer Science Department, Alpine Institute of Technology,

ARTICLE INFO ABSTRACT

Wireless networks are inherently
control algorithms are not directly applicable to wireless networks due to these differences (e.g.,
higher error rates, prolonged delays, reduced bandwidth, frequent mobility, etc.). Therefore,
improved techniques for controlling TCP congestion have been introduced. The primary objectives of
those methods were to efficiently manage congestion, withstand loss with dependability, and reduce
gearbox errors. Unique congestion management and a
Tahoe, Reno, New

Copyright©2024, Deepika Ratnawat and Pankaj Raghuvanshi
which permits unrestricted use, distribution, and reproduction

INTRODUCTION

A dependable, end-to-end, connection-oriented transport
layer protocol that offers byte-stream-based services is
TCP (Transmission Control Protocol)
Internet services, such as HTTP (Hypertext Transfer Protocol)
and the World Wide Web, as well as FTP (File Transfer
Protocol), rely heavily on TCP. Even if the web architecture
changes in the future, TCP and its applications will most likely
be used continuously. However, in terms of performance and
connection fairness, the famous TCP Tahoe and R
versions (as well as their variations) on the modern Internet
should be improved. As a result, a great deal of TCP research
has been conducted, and numerous enhancement strategies
have been put forth. The TCP Vegas version
exceptional performance, making it one of the most
promising techniques. TCP Vegas enhances TCP Reno's
congestion avoidance mechanism. TCP Vegas dynamically
modifies its window size when transmitting packets based
on measured RTTs (round trip times). On the other hand,
TCP Tahoe/Reno keeps expanding its window size until it
detects packet loss. Through modeling and implementation
trials, the authors in (3) conclude that TCP Vegas can
achieve throughput improvements of up to 40% over TCP
Reno.

ISSN: 0975-833X

International

Article History:

Received 20th January, 2024
Received in revised form
19th February, 2024
Accepted 15th March, 2024
Published online 30th April, 2024

Citation: Deepika Ratnawat and Pankaj Raghuvanshi
Current Research, 16, (04), xxxx-xxxxx.

Key words:

Improved mobile ad hoc network
congestion and corruption control can be
achieved by implementing the suggestions
provided by an analysis of these variances.

*Corresponding author:
Deepika Ratnawat

REVIEW ARTICLE

REVIEW: A BEHAVIORAL ANALYSIS OF TCP VARIANTS FOR MANET

Deepika Ratnawat and 2Pankaj Raghuvanshi

Computer Science, M. Tech, Alpine Institute of Technology,
Computer Science Department, Alpine Institute of Technology,

ABSTRACT

Wireless networks are inherently distinct from wired networks in numerous ways; TCP congestion
control algorithms are not directly applicable to wireless networks due to these differences (e.g.,
higher error rates, prolonged delays, reduced bandwidth, frequent mobility, etc.). Therefore,
improved techniques for controlling TCP congestion have been introduced. The primary objectives of
those methods were to efficiently manage congestion, withstand loss with dependability, and reduce
gearbox errors. Unique congestion management and avoidance techniques for the TCP/IP protocols
Tahoe, Reno, New-Reno, Lite, TCP Vegas, and SACK are investigated and assessed in this study.

Deepika Ratnawat and Pankaj Raghuvanshi. This is an open access article distributed under the Creative
reproduction in any medium, provided the original work is properly cited.

oriented transport
based services is

TCP (Transmission Control Protocol) (1), (2). Many
Internet services, such as HTTP (Hypertext Transfer Protocol)

l as FTP (File Transfer
Protocol), rely heavily on TCP. Even if the web architecture
changes in the future, TCP and its applications will most likely
be used continuously. However, in terms of performance and
connection fairness, the famous TCP Tahoe and Reno
versions (as well as their variations) on the modern Internet
should be improved. As a result, a great deal of TCP research
has been conducted, and numerous enhancement strategies

The TCP Vegas version (3,4) has
mance, making it one of the most

promising techniques. TCP Vegas enhances TCP Reno's
congestion avoidance mechanism. TCP Vegas dynamically
modifies its window size when transmitting packets based
on measured RTTs (round trip times). On the other hand,

Tahoe/Reno keeps expanding its window size until it
detects packet loss. Through modeling and implementation

conclude that TCP Vegas can
achieve throughput improvements of up to 40% over TCP

The assumption that congestion is the only factor contributing
to packet loss led to the development of TCP congestion
management algorithms in the beginning. However, due to
several circumstances, such as inclement weather, obstacles,
multipath interference, wireless endpoint mobil
fading and attenuation, and packet loss, bit error rates in
wireless networks are higher.

TRADITIONAL TCP

Previously, TCP established a connection by permitting the
sender to send the maximum number of segments that the
recipient had advertised, regardless of whether the router had
enough spare capacity to handle the repeated packet injections
or if the sender and recipient were connected by slower links.
For two endpoints on the same network that exchange data,
the previous version of TCP was appropriate. If either
endpoint is on a separate network, issues may arise right
away. If the router has to have extra
hold the packages that are being sent, then another problem
may occur. Owing to this constraint, a congestion control
method that can manage these issues needs to be
developed. RFC (5) states that the slow start approach is
the most suitable method for addressing this issue.

International Journal of Current Research

Vol. 16, Issue, 04, pp.28027-28026, April, 2024

DOI: https://doi.org/10.24941/ijcr.47083.04.2024

Pankaj Raghuvanshi. 2024. “Review: A Behavioral Analysis of TCP Variants for MANET

 Available online at http://www.journalcra.com
 z

REVIEW: A BEHAVIORAL ANALYSIS OF TCP VARIANTS FOR MANET

Alpine Institute of Technology, Ujjain (M.P.), India;
Computer Science Department, Alpine Institute of Technology, Ujjain (M.P.), India

distinct from wired networks in numerous ways; TCP congestion
control algorithms are not directly applicable to wireless networks due to these differences (e.g.,
higher error rates, prolonged delays, reduced bandwidth, frequent mobility, etc.). Therefore, several
improved techniques for controlling TCP congestion have been introduced. The primary objectives of
those methods were to efficiently manage congestion, withstand loss with dependability, and reduce

voidance techniques for the TCP/IP protocols
Reno, Lite, TCP Vegas, and SACK are investigated and assessed in this study.

Creative Commons Attribution License,
cited.

ion is the only factor contributing
to packet loss led to the development of TCP congestion
management algorithms in the beginning. However, due to

such as inclement weather, obstacles,
multipath interference, wireless endpoint mobility, signal
fading and attenuation, and packet loss, bit error rates in

Previously, TCP established a connection by permitting the
sender to send the maximum number of segments that the
recipient had advertised, regardless of whether the router had
enough spare capacity to handle the repeated packet injections

and recipient were connected by slower links.
For two endpoints on the same network that exchange data,
the previous version of TCP was appropriate. If either
endpoint is on a separate network, issues may arise right
away. If the router has to have extra storage in order to
hold the packages that are being sent, then another problem
may occur. Owing to this constraint, a congestion control
method that can manage these issues needs to be

states that the slow start approach is
itable method for addressing this issue.

 INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Behavioral Analysis of TCP Variants for MANET”. International Journal of

SLOW START

To prevent network congestion, the slow start algorithm
regulates the datagram flow in the system. The goal is to
increase the slow-start congestion window exponentially. This
is the slow start algorithm from (5).

Add a congestion window to the per-connection state. Set
the congestion window to one packet when starting or
restarting after a loss. On each acknowledgement for a
new data connection, increase the congestion window by
one packet. Send only what is advertised to the recipient
and within the given timeframe.

By restricting the number of unacknowledged packets that
may be in transit, TCP manages the data flows and attempts
to keep a congestion window open.

CONGESTION AVOIDANCE

Congestion avoidance, as described in (5), is a TCP restriction
strategy that controls slow start exponential duplication to
prevent overflowing the network with segments that may
otherwise cause congestion. With this algorithm, TCP
reduces the congestion window by half for every loss.

FAST RETRANSMIT

Retransmission and fast recovery (5) rely on the TCP version
used in Reno. Segments received out of sequence may cause
TCP to produce an instant duplicate acknowledgment. The
purpose of this duplication is to alert the sender that the
segments they transmitted were received out of order and to
let them know what sequence number to expect in the
subsequent transmission. TCP waits for the receipt of a
duplicate Ack with a small number. If three duplicates are
approved, the segment is considered lost. TCP will, in this
instance, retransmit the absent segment without waiting for
the timer to expire. Below, fast recovery and fast
retransmission are put into practice.

FAST RECOVERY: Since a lost packet signifies potential
congestion, congestion avoidance is achieved after a rapid
retransmit of the absent segment. Fast recovery is the name
given to this algorithm.

PERFORMANCE EVOLUTION OF TCP VARIANTS:
In this section, we argue the performance of various TCP
versions regarding Tahoe, Reno, New Reno, SACK, FACK
and Vegas.

TCP Tahoe: Tahoe (6), (7) refers to the TCP congestion
control algorithm, which Van Jacobson suggested in his
paper, has some enhanced features in TCP implementation,
including slow start, congestion avoidance, and fast
retransmission. Tahoe recommends that whenever a TCP
connection starts or re-starts after a packet loss, it should go
through a 'slow start' procedure. This approach is because an
initial burst might overwhelm the network, and the connection
might never start. A slow start implies that the sender sets the
congestion window to 1 and raises the CWD by 1 for each
received ACK. Tahoe uses 'Additive Increase Multiplicative
Decrease' for congestion avoidance. Tahoe stores half of the
window as a threshold value, and a packet loss indicates
congestion. After that, it starts slowly and raises CWD to one

until it reaches the threshold value. Following that, CWD
increases linearly until a packet loss occurs. The essential
issue is that Tahoe detects packet losses through timeouts.
TCP Tahoe's fast retransmission algorithm outperforms the
most when the packets are lost due to congestion. The sender
must wait for the retransmission timer to expire before
implementing the fast retransmit algorithm. At the same time,
fast retransmitting makes Tahoe perform significantly better
than a TCP implementation. The issue with TCP Tahoe is
that it detects packet loss after the whole timeout period. The
speed of TCP Tahoe decreases when a packet loss is found.
Transmission flow quickly drops as a result.

TCP Reno: Reno has maintained the fundamental ideas of
Tahoe, including slow starts, avoidance, and fast retransmits,
except it maintains improvements over Tahoe by adding to
the fast recovery phase known as the rapid recovery algorithm
(6). TCP Reno stimulates packet losses to estimate the
available bandwidth in the network. Although there are no
packet losses, TCP Reno continues to increase its window
size by one during each round-trip time. When it experiences
a packet loss, it reduces its window size to one-half of the
current size. Reno suggests an algorithm called 'Fast
Retransmit.' Senders can retransmit a segment without
waiting for a timeout if the recipient receives three duplicate
ACKs, which indicates that the segment was lost. When a
single packet is lost from a data window, TCP Reno maintains
it by a fast recovery mechanism; in contrast, when multiple
packets are lost, Reno's performance is the same here as
Tahoe's. This indicates that if multiple packets are lost from
the same window, TCP Reno almost immediately drags out of
fast recovery and stops until no new packet can be sent.
Hence, TCP Reno cannot effectively handle multiple packet
losses within a single window. TCP Reno then enters a fast
recovery phase (9) if the fast retransmit algorithm finds the
packet loss. In this phase, the window size is increased by one
packet when a duplicate ACK packet is received. (8)

TCP New Reno: TCP New Reno (9) enhances retransmission
in TCP Reno's fast recovery phase. In order to maintain a full
transmit window during rapid recovery, a fresh unsent packet
from the end of the congestion window is sent for each
duplicate ACK returned to TCP New Reno. For every ACK
that represents a portion of the the next packet beyond the
ACKed sequence number is transmitted, and the sender
assumes that the ACK leads to a new hole in the sequence
space. Like TCP SACK, New Reno can fill big or many holes
in the sequence space since the timeout timer is reset
whenever there is progress in the transmit buffer. High
throughput is maintained during the hole-filling process even
when there are several holes, each carrying multiple packets,
because New Reno can deliver new packets close to the end
of the congestion window during fast recovery. In fast
recovery mode, TCP logs the sequence number of the highest
unacknowledged packet. Following acknowledgement of the
sequence number, TCP goes back to its congestion avoidance
state.

TCP Vegas: The TCP congestion avoidance method known
as TCP Vegas uses packet delay as a signal rather than packet
loss to help decide how quickly to send packets.(3). TCP
Vegas distinguishes itself from other versions like Reno, New
Reno, etc., by detecting congestion early on through growing
Round-Trip Time (RTT) values of the packets in the

28028 Deepika Ratnawat and Pankaj Raghuvanshi, Review: A behavioral analysis of tcp variants for manet

connection. Other versions detect congestion only after it has
occurred through packet loss. The Base RTT value must be
calculated precisely for the algorithm to work. If the value is
too great, it will overwhelm the connection, and if it is too
small, the throughput of the connection will be less than the
available bandwidth.

TCP-Lite: To minimize the overhead associated with session
management, TCP-Lite is a service that offers an alternate
transport channel for TCP connections in which no
application data is sent or received. During channel setup,
teardown, and acknowledgement, TCP-Lite reduces or
eliminates pure TCP protocol data units (PDUs) while
preserving the order, integrity, reliability, and security of the
original TCP transport. Applications that use TCP to
communicate between a client and server can use TCP-Lite
without modification. In environments where clients require
multiple or frequent session establishment, TCP-Lite reliably
reduces the amount of data transferred between the client and
server (10). To manage the performance choices between an
MNC and mobility clients that connect to it, a TCP-Lite
transport is applied to a connection profile, which is a
collection of configuration properties provided to an MNC.
The following features are included in TCP Lite:
Slow start, avoidance of congestion, fast retransmission,
quick recovery, large window, and protection against wrapped
sequence numbers are only a few of the features available.

Comparison of TCP Algorithms

Algorithms/ TCP
Variants

TCP Tahoe TCP
Reno

TCP New
Reno

TCP
Lite

TCP
Vegas

Slow Start Yes Yes Yes Yes E V

Congestion Avoidance Yes Yes Yes Yes E V

Fast Retransmit Yes Yes Yes Yes Yes

Fast Recovery No Yes E V Yes Yes
Retransmission on

mechanism
N N N N N M

Congestion Control
mechanism

N N N N N M

Selective ACK
mechanism

No No No Yes No

 (N = Normal, E V = Enhanced Version, N M = New Mechanism)

Results and Analysis Based on Throughput, Signal
Received with error, Packet Loss and Total Bytes
Received.

Figure 1. Mobility vs. Throughput

Figure 2. Mobility vs. Signal Received with error

Figure 3. Mobility vs. Byte Received

Figure 4. Mobility Vs Packet Loss

Figure 5 Pause Time vs. Throughput

28029 International Journal of Current Research, Vol. 16, Issue, 04, pp.28027-28031, April, 2024

Figure 6. Pause Time vs. Byte Received

Figure 7. Pause Time vs. Packet Loss

Figure 8. Pause Time vs. Signal Received with error

Figure 9. No of Node vs. Throughput

Figure 10. No of Node vs. Byte Received

Figure 11. No of Node vs. Signal Received with error

Figure 12. No of Node vs. Packet Loss

GUIDELINES FOR IMPROVING CONGESTION
CONTROL ALGORITHM: Wireless environments have
many different characteristics, such as higher error rates, longer
delays, lower bandwidth, frequent mobility, and so on. TCP
congestion control mechanisms are only sometimes directly
suitable for wireless networks, and we have seen many
improved TCP congestion control mechanisms. Generally, the
influence of link corruption on the TCP sender's packet-sending
rate is not considered in these enhanced schemes. However,
unnecessary packets lost by corruption can be significantly
avoided through the decrease of packet sending rate, which
may lead to higher reliability, excessive energy consumption of
mobile hosts, and less system overheads. For a given TCP
connection, it is reasonable to assume that the possibility of
packet loss by corruption can be obtained approximately from
pe=m/n, where n is the number of total packets, and m is the

28022 Deepika Ratnawat and Pankaj Raghuvanshi, Review: A behavioral analysis of tcp variants for manet

28030 Deepika Ratnawat and Pankaj Raghuvanshi, Review: A behavioral analysis of tcp variants for manet

sum of packets lost by corruption during the period T. So, by
using the corruption loss rate, the congestion control
mechanism can be improved. In the following paper, we will
propose a new mechanism called refined TCP.

CONCLUSION

In this paper, we have identified the possible causes of
congestion over the network. We have also discussed the
main intertwined algorithms that help to control congestion
over the network. We also saw how TCP implements flow
controls by having the receiver advertise the amount of data it
is willing to accept. Then, we discussed TCP Reno fast
retransmit and fast Recovery, TCP New Reno, and TCP
Vegas congestion algorithms. We saw that the introduction of
TCP Reno changed the way datagrams are exchanged. TCP
Reno has performed remarkably well and has prevented
severe congestion on the Internet. Although these algorithms
have incredible potency in handling congestion, their
limitation abounds.

REFERENCES

1. Postel, J. 1981. “Transmission control protocol,” RFC

793, Sept.
2. Holland G. and N. Vaidya, “Analysis of TCP

performance over mobile ad hoc networks,” in Proc.
ACM/IEEE Int. Conf. on Mobile Computing, Seattle,
WA, USA, Sept. 1999, pp. 219 –230

3. Brakmo, L.S. L.L. Peterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet”, IEEE
Journal on Selected Areas in Communication, vol.
13(1995), (1465-1490).

4. Ait-Hellal, O. E. Altman “Analysis of TCP Reno and
TCP Vegas”.

5. Stevens,W. “TCP slow start, congestion avoidance, fast
retransmit and fast recovery algorithms,” RFC 2001,
Jan. 1997.

6. Jacobson,V. “Congestion avoidance and control,” in
Proc. ACM SIGCOMM, Symp. on Commun. Archit. And
Protocols, Stanford, CA, USA, Aug. 1988, pp. 314–
329.

7. Akhtar, M. N. M. A. O. Barry, and H. S. Al-
Raweshidy, “Modified Tahoe TCP for wireless
networks using OPNET. Simulator,” in Proc of the
London Communications Symposium (LCS2003),
London, UK, Sept. 2003.

8. Floyd S. and K. Fall, “Simulation based comparisons
of Tahoe, Reno, and SACK TCP,” ACM Computer
Communication Review, vol. 26, no. 3, pp. 5–21, July
1996.

9. Floyd S. and T. Henderson, “The NewReno
modification to TCP’s fast recovery algorithm,” RFC
2582, Apr. 1999.

10. Alfredsson, S “TCP Lite - A Bit Error Transparent
Modification of TCP”.

11. Zeng W. G. and Lj. Trajkovic, “TCP packet control for
wireless networks,” in Proc. IEEE Int. Conf. on
Wireless and Mobile Computing, Networking and
Communications (WiMob 2005), Montreal, Canada,
Aug. 2005, vol. 2, pp. 196–203.

12. Chiu D. and R. Jain, “Analysis of the increase/decrease
algorithms for congestion avoidance in computer
networks,” J. of Comput. Netw. ISDN Syst., vol. 17, no.
1, pp. 1–14, June 1989.

13. Allman, M. V. Paxson, and W. Stevens, “TCP
congestion control,” RFC 2581, Apr. 1999.

14. Floyd S. and K. Fall, “Simulation based comparisons of
Tahoe, Reno, and SACK TCP,” ACM Computer
Communication Review, vol. 26, no. 3, pp. 5–21, July
1996.

15. Lee, H. S. Lee, and Y. Choi, “The influence of the large
bandwidth-delay product on TCP Reno, NewReno, and
SACK,” in Proc. Information Networking Conference,
Oita, Japan, Feb. 2001, pp. 327–334.

16. Anjum F. and L. Tassiulas, “Comparative study of
various TCP versions over a wireless link with
correlated losses,” IEEE/ACM Transactions on
Networking, vol. 11, no. 3, pp. 370–383, June 2003.

17. Jacobson V. “Modified TCP Congestion Control and
Avoidance Algorithms”. Technical Report 30, Apr
1990.

18. Fall, K. S. Floyd “Simulation Based comparison of
Tahoe, Reno and SACK TCP”.

28031 International Journal of Current Research, Vol. 16, Issue, 04, pp.28027-28031, April, 2024
