

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 14, Issue, 12, pp.23111-23115, December, 2022 DOI: https://doi.org/10.24941/ijcr.44452.12.2022 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

STATISTICAL INVESTIGATION OF THE FREQUENCIES OF THE NUMBERS OF RAINY DAYS IN DSCHANG AND SURROUNDINGS WESTERN REGION OF CAMEROON PERIOD FROM 1976 TO 2015

Njipouakouyou Samuel^{1,*} and Galmai Orozi²

¹Frmr senior Lecturer, Faculty of Sciences, University of Dschang – Cameroon ²Senior lecturer, Faculty of Pure and Applied Sciences, University of Ndjamena – Chad

ARTICLE INFO

ABSTRACT

Article History: Received 19th September, 2022 Received in revised form 15th October, 2022 Accepted 20th November, 2022 Published online 30th December, 2022

Key words:

Frequencies, Numbers of rainy days, Monthly Numbers of Rainy Days, Yearly Numbers of Rainy days, Seasonal Numbers of Rainy Days, Beginning of the Rainy Season, Standard Deviations, Quantities of Needed water by Plants and cultures, Agricultural Activities, Seeding, Degree of Fidelity.

*Corresponding Author: Njipouakouyou Samuel This study concerns the frequencies of monthly, yearly and seasonal numbers of rainy days in Dschang and surroundings for the period from 1976 to 2015 and their tendencies over this period. This investigation has revealed a slight time deterioration of these numbers accompanied by the reduction of the rainfall and pluviometry, particularly by the end of the considered period. This deterioration has been caused by the large scale destruction of the environment generated by the sudden augmentation of the populations of the city just after the creation of a classic university in Dschang. The proposed solution to this degradation is to give this area the green look she had before.

Copyright©2022, Njipouakouyou Samuel and Galmai Orozi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Njipouakouyou Samuel and Galmai Orozi. 2022. "Statistical investigation of the frequencies of the numbers of rainy days in Dschang and surroundings Western Region of Cameroon. Period from 1976 to 2015". International Journal of Current Research, 14, (12), 23111-23115.

INTRODUCTION

One of the main problems terrifying farmers for already many years in most countries and particularly developing ones is the missmanagement of the rainy seasons, mostly at their beginnings. This situation use to manifest itself as follows. At the beginning of the rainy season it regularly rains for three weeks and sometimes a little more. During this period, farmers run to their fields for agricultural activities, particularly seeding as the land use to be already prepared. Water provided by these rainfalls makes plants start growing mostly to the stage of the biomasses formation. It is well known that at this stage the quantities of water needed by cultures are very high. Very often, by this time a dry season occurs suddenly for sometimes more than six weeks, putting plants under strong water stresses as its soil reserve is not yet sufficient to provide cultures needed quantities of water. Recall that we are under the tropics, near the equator, where the dry season use to be severe and we are still at the beginning of the rainy season when the soil water reserve is still at its lowest level.

Moreover the populations in extreme poverty have no instruments for irrigation and the rivers are rare to enable inhabitants to drain water to their fields. This situation very negatively impacts the yields, quantitatively and qualitatively, leading to socio-economical catastrophic consequences. These situations are also encountered in Dschang, whence the importance of this investigation for the locality. In front of this situation, reseeding the field after that sudden dry season is one of the remedies to overcome this problem. Unfortunately this seems to be complicated and even impossible as many countries, particularly developing ones, have no policy of preserving seeds obliging each farmer to manage as he can, usually without any help from special public services. Thus, after this sad event, farmers have no more available seeds when the real rainy season is back. So it is understandable why most developing countries are always under permanent international food assistance. Today, developed countries help developing ones. A question a safety brain man could ask is to know for how long again this international help could run as the world economical situation is progressively getting tougher and tougher. Clear that these developing countries must urgently solve their problem of miss-management of the rainy season

to avoid future hunger tragedy. Awarded of this tragedy, some researchers have started paying their attention to the rainfall regime, but poorly because of lack of data. The present article on the frequencies of the rainfalls in Dschang and surroundings could be considered as a real beginning of solution to this problem as done on the basis of accurate and substantial chronological data obtained by good qualified personal. Hopeful that sets of normal meteorological stations respecting the World Meteorological Organization prescriptions should be created in developing countries. They should provide different researchers a bank of accurate and long series of meteorological data to enable them to carry their work. This paper has five sections. The first and present one introduces the problematic of our study. The second section is on the data and methodology used. The results of data treatments and their analysis are in the third section, the conclusion and recommendations in the fourth section. The bibliography in alphabetic order is in the fifth section.

Data and methodology

Data: Data used in this work comes from the meteorological station of the agronomic research institute in Dschang, locality situated on the highlands in the western region of Cameroon, altitude about 1500 meters above the sea level. This locality on the mountains faces to the Atlantic Ocean away by approximately 350 kilometers. This institute is one of the most important agronomic research centers in the country. Thus, it is well-equipped with good instruments, high qualified multidisciplinary personals. Thus, the quality of used data should not suffer of any doubt. The data concerns daily rainfalls with pluviometry of at least 5 mm each during the period from 1976 to 2015, a total of 40 years. Monthly and yearly numbers of such daily rainfalls were determined and presented in tabular forms. Pluviometry of at least 5 mm was considered because the dry season used to be severe and at its end the soil water reserve should be at its lowest level to sustain normal development of cultures until this reserve reaches an acceptable level.

METHODOLOGY

Monthly and yearly numbers of rainy days with corresponding standard deviations and mathematical means were calculated. Standard deviations enabled us to have an idea on the distribution of the numbers of rainy days around their corresponding mathematical means. Monthly probabilities enabled us to estimate the chance of occurrence of the fund monthly number of rainy days in the considered month. Obviously, this information should be very useful when planning agricultural activities, particularly seeding at the beginning of the rainy season. Modeling the time trend of the yearly numbers of rainy days was done using the least squares method. To facilitate computations an auxiliary variable t was introduced such that year 1995 corresponds to t = 0. To obtain these probabilities, the monthly numbers of rainy days N was divided by the corresponding total monthly number of days in the whole period multiplying 40 years by 31 for months with 31 days or 30 for months with 30 days and at last by 28 for February month; i.e. respectively 1240, 1200 and 1120 days. The last column $\Sigma_{\rm Y}$ represents the yearly numbers of rainy davs.

RESULTS AND ANALYSIS

The data treatment led us to Table 3.1. In the last three rows of this table, N represents the monthly numbers of rainy days, s - their corresponding standard deviations and p – the probabilities of their occurrences during the whole period of study. Table 3.1 clearly indicates that the period covering November, December, January and February corresponds to the dry season in the locality despite the fact that some rainfalls were registered during this time. The remaining months correspond to the rainy season, particularly the period from April to October when it rained almost every three days. For the whole period, the rainiest year was 1982 with 131 rainy days and the less rainy year – 2011 with a total of only 75 rainy days.

The less rainy month for the whole period was January with only 30 rainy days in 40 years and corresponding standard deviation and probability of occurrence respectively 1 day and 0.024. Within the same period the rainiest month was August with corresponding numerical characteristics respectively 678 days, 3 days and 0.565 chance of occurrence. All the standard deviations of the monthly numbers of rainy days were mostly of order 2 less than the corresponding main characteristics indicating that these monthly numbers were dispatched closer to their mathematical means. The probabilities of occurrence of rainy day were of order 10⁻² during the dry season and 10⁻¹ during the remaining period. These probabilities were around 0.350 in April-May and varied from 0.396 in July to 0.565 in September. Table 3.1 informs that at the beginning of the rainy season, April-May, rainfalls of pluviometry of at least 5 mm were registered mostly every three days and almost every two days the remaining time. Starting from year 2011 the monthly numbers of rainy days clearly started decreasing till the end of the period of study. Columns t and Σ_Y of Table 3.1 led to Table 3.2 which enabled us to plot experimental points $N_{\boldsymbol{Y}}(t)$ in a coordinate axes with \boldsymbol{t} in the abscissa and Ny, the yearly numbers of rainy days, in ordinates to investigate the time tendency of N_Y. The analysis of the configuration of the obtained cloud of points $N_{Y}(t)$, Figure 3.1, led to a conclusion of a linear relationship between t and Ny. Applying the least squares method has permitted to obtain its analytic expression:

$$N_{\rm Y}(t) = -0.4t + 102. \tag{3.1}$$

Corresponding standard deviations, sy, of Ny and the average monthly numbers of rainy days, n_Y , were calculated. The results are presented in Table 3.2. Table 3.2 indicates that the standard deviations of the yearly numbers of rainy days were mostly of two orders less than their corresponding main parameters. This indicates that these yearly numbers of rainy days were scattered closer their mathematical mean value. Before 2001, ny oscillating around 10 led to the conclusion that rainfall was registered in the area mostly after every three days in a month. ny fell around 8 in the remaining years, increasing the interval between rainy days. The rainy season was established from March to October. Data treatment just for this period led to Table 3.3 where $N_{\text{S}},\,s_{\text{S}}$ and n_{S} are respectively the numbers, standard deviations and the average monthly numbers of rainy days. Table 3.3 indicates that N_s was in the interval from 71 days in 1990, 2011 and 2012 to 122 days in 1982. The orders of the standard deviations and corresponding main parameters were respectively 10⁰ and 10^2 indicating that experimental points N_S were scattered closer to their mathematical mean. Moreover, variation of n_s mostly around 12-13 rainy days per month till 2008 and around 9-10 the remaining years led to the conclusion that the time interval between rainy days was increasing by the end of the period of study, whence the conclusion of the degradation of the rainfall regime in the locality.

Archives revealed that the time degradation of N_S was accompanied by the reduction of the precipitations and consequently, of the pluviometry. Most seasonal numbers of rainy days were situated in the interval 90–108 corresponding to about three rainy months in a year. Analysis of the configuration of the cloud of experimental points Ns(t) led to a linear relationship between variables t and N_S, Figure 3.2. The least squares method has permitted to obtain its analytical expression:

$$N_{\rm S}(t) = -0.4t + 95. \tag{3.2}$$

Results of modeling of N by formulas (3.1) and (3.2) are in Table 3.4. In Table 3.4 N_Y and N_S, N_{Y,th} and N_{S,th}, δ_Y and δ_S are respectively the experimental and theoretical values of N, and their corresponding degrees of fidelity. Both models gave decreasing linear functions of time t, confirming the degradation of the rainfall regime in the locality. Small coefficients of the regression lines of order 10^{-1} were the indicator of slowly time deterioration of that rainfall regime. As this phenomenon slowly occurs, it is still time to take adequate measures to prevent eventual future deep deteriorations because of their eventual catastrophic socio-economic consequences. The degree of fidelity of both models, Table 3.4, indicates that their values were mostly of 2 orders less than the corresponding values of N.

Years	t	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	$\Sigma_{\rm Y}$
1976	-19	0	5	8	12	13	13	16	14	17	17	7	0	122
1977	-18	2	1	3	9	12	12	13	15	18	15	0	1	101
1978	-17	1	1	7	12	9	17	9	17	19	15	2	0	109
1979	-16	1	6	4	12	9	15	15	13	12	11	3	0	101
1980	-15	1	2	5	7	12	13	11	18	18	19	4	0	110
1981	-14	0	0	13	10	14	12	9	20	19	11	1	0	109
1982	-13	3	5	7	11	12	18	19	19	19	17	1	0	131
1983	-12	0	1	1	8	9	10	14	12	15	7	1	3	81
1984	-11	0	1	9	10	9	14	10	15	20	11	1	0	100
1985	-10	2	1	10	14	11	17	13	17	17	6	4	0	112
1986	-9	1	2	11	13	11	11	12	19	19	10	3	0	112
1987	-8	0	2	6	5	8	13	14	11	19	11	0	0	89
1988	-7	0	3	4	11	8	5	13	12	18	15	1	2	92
1989	-6	1	0	6	9	13	16	12	18	19	9	3	1	107
1990	-5	0	0	0	12	13	9	12	20	14	17	4	3	104
1991	-4	0	2	4	12	21	11	7	13	14	13	2	0	99
1992	-3	1	0	6	12	16	9	11	15	20	15	2	0	101
1993	-2	2	0	11	9	6	13	17	17	21	17	6	0	119
1994	-1	2	0	5	13	12	14	11	13	18	15	1	0	104
1995	0	1	0	3	12	15	10	13	9	16	15	3	0	97
1996	1	0	3	11	10	11	15	10	11	14	10	0	0	95
1997	2	1	0	8	17	7	18	12	13	20	13	5	2	115
1998	3	0	2	2	12	10	13	13	12	17	15	1	0	97
1999	4	3	3	9	7	13	10	14	18	16	19	4	0	116
2000	5	0	1	1	12	14	17	13	12	22	13	2	0	107
2001	6	0	1	10	10	9	18	11	20	19	11	1	0	110
2002	7	0	1	6	9	5	19	14	17	9	7	2	0	89
2003	8	1	2	5	8	8	14	15	13	17	15	2	0	100
2004	9	1	1	5	16	9	14	9	18	16	10	8	0	107
2005	10	1	4	9	9	9	9	17	18	16	12	3	0	107
2006 2007	11 12	1 0	4	12 6	4	16 7	10 12	14 17	14 17	19 18	8 14	2 5	0	104 109
2007	12	1	0	9	12	12	12	17	17	18	14 7	3	1	97
2008	13	3	2	9	13	12	13	7	11	17	15	4	0	97
2009	14	0	5	5	9	13	9	10	8	15	17	4	0	99
2010	15	0	2	4	3	8	6	10	9	13	17	2	0	75
2011	17	0	4	0	7	9	8	11	12	10	12	4	0	79
2012	18	0	0	6	6	9	10	10	7	20	13	4	2	88
2013	19	0	1	9	12	9	7	10	14	14	17	9	0	103
2014	20	0	0	6	6	9	7	10	12	14	17	4	0	85
Σ	40	v	, v				,	10	12		1,			14280
N		30	69	247	407	432	492	491	578	678	525	118	38	4082
s		1	2	3	3	3	4	3	3	3	3	2	4	12
p		0.024	0.062	0.199	0.339	0.348	0.410	0.396	0.466	0.565	0.423	0.098	0.031	0.286
Р		5.021	0.002	0.177	5.557	5.5 10	5.115	0.070	0.100	0.000	0.123	0.070	0.051	0.200

Table 3.1. Monthly numbers of rainy days with at least 5 mm of pluviometry each

Table 3.2. Yearly numbers of rainy days, $N_{Y_{\rm r}}$ corresponding standard deviations, $s_{Y},$ and average monthly numbers of rainy days, n_{Y}

Years	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Ny	122	101	109	101	110	109	131	81	100	112	112
s _Y	6	7	7	5	7	7	7	5	7	6	7
ny	10	8	9	8	9	9	11	7	8	9	9
1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
89	112	107	104	99	107	119	104	97	95	115	97
6	6	7	7	7	7	7	7	6	6	7	7
7	9	9	9	8	9	10	9	8	8	10	8
1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
116	107	110	89	100	107	107	104	109	97	99	99

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	116	107	110	89	100	107	107	104	109	97	99	99
ſ	6	8	7	6	6	6	6	6	7	6	6	5
	10	9	9	7	8	9	9	9	9	8	8	8

2011	2012	2013	2014	2015
75	79	88	103	85
6	5	6	6	6
6	7	8	9	7

Njipouakouyou Samuel and Galmai Orozi, Statistical investigation of the frequencies of the numbers of rainy days in dschang and surroundings western region of cameroon period from 1976 to 2015

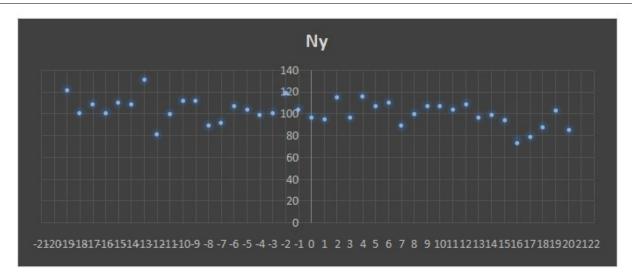


Figure 3.1. Cloud of experimental points for determining the functional relationship N_Y(t)

Table 3.3. Rainy seasonal, N_s, corresponding standard deviations, s_s and average monthly numbers, n_s of rainy days

Years	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Ns	110	97	105	91	103	108	122	76	98	105	106
SS	3	5	4	4	5	4	5	4	4	4	4
ns	14	12	13	11	13	14	15	10	12	13	13

1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
77	86	102	71	95	104	111	91	93	92	107	94
5	5	5	7	5	4	5	5	4	2	5	4
10	11	13	9	12	13	14	11	12	12	13	12

1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
106	104	108	86	95	97	99	93	103	92	90	85
4	6	5	5	4	5	4	4	5	3	5	4
13	13	14	11	12	12	12	13	13	12	11	11

2011	2012	2013	2014	2015
71	71	82	93	81
5	4	5	3	4
9	9	10	12	10

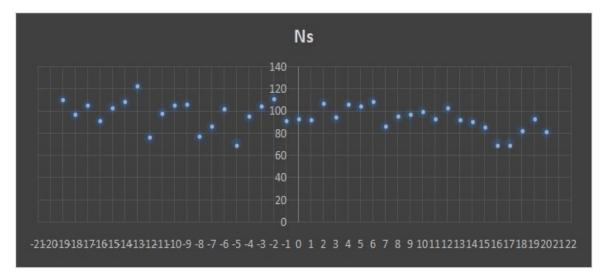


Figure 3.2. Cloud of experimental points for determining the functional relationship $N_{S}(t)$

Recalling the usual high time-spatial variability of precipitations, these low values of the degrees of fidelity should lead to the conclusion that used data and the established models were accurate to be implemented in operational works. Between other causes, the ongoing degradation of the rainfall regime in Dschang could be explained as follows. Before 1993, Dschang was a very peaceful and green agricultural area with its National Advanced School of Agriculture.

Formula	(3.1)					Form	ula (3.2)
Years	t	t^2	N _Y	N _{Y,th}	δ_{Y}	Ns	N _{S,th}	δ_{S}
1976	-19		122	110	-12	110	103	-7
1977	-18		101	109	8	97	102	5
1978	-17		109	109	0	105	102	-3
1979	-16		101	108	7	91	101	10
1980	-15		110	108	-2	103	101	-2
1981	-14		109	108	-1	108	101	-7
1982	-13		131	107	-24	122	100	-22
1983	-12		81	107	26	76	100	24
1984	-11		100	106	6	98	99	1
1985	-10		112	106	-6	105	99	-6
1986	-9		112	106	-6	106	98	-7
1987	-8		89	105	16	77	98	21
1988	-7		92	105	13	86	98	12
1989	-6		107	104	-3	102	97	-5
1990	-5		104	104	0	71	97	26
1991	-4		99	104	5	95	97	2
1992	-3		101	103	2	104	96	-8
1993	-2		119	103	-16	111	96	-15
1994	-1		104	102	-2	91	95	4
1995	0		97	102	5	93	95	2
1996	1		95	102	7	92	95	3
1997	2		115	101	-14	107	94	-13
1998	3		97	101	4	94	94	0
1999	4		116	100	-16	106	93	-13
2000	5		107	100	-7	104	93	-11
2001	6		110	100	-10	108	93	-15
2002	7		89	99	10	86	92	6
2003	8		100	99	-1	95	92	-3
2004	9		107	98	-9	97	91	-6
2005	10		107	98	-9	99	91	-8
2006	11		104	98	-6	93	91	-2
2007	12		109	97	-12	103	90	-13
2008	13		97	97	0	92	90	-2
2009	14		99	96	-3	90	89	-1
2010	15		94	96	2	85	89	4
2011	16		75	96	21	71	89	18
2012	17		79	95	16	71	88	18
2013	18		88	95	7	82	88	6
2014	19		103	94	-9	93	87	-6
2015	20		85	94	9	81	87	6
sums	20	5340	4076	-	-			

Table 3.4. Results of modeling	of N _Y and N _S and corresponding	degrees of fidelity $\delta_{\rm V}$, $\delta_{\rm S}$

It had very few inhabitants and the institution had not many personals and students. In 1993 this school was transformed to a classic university with five faculties on campus and two out. Suddenly the number of inhabitants was increased by even more than five times. Many spaces, formerly occupied by trees or reserved to agricultural activities, were progressively destroyed for new buildings.

Moreover, no policy of planting new trees or preserving what was before was taken. Thus, inhabitants were in front of a progressing desert and the climate started degrading to what is going on today. Obviously that one of the main remedies to this situation is to make an effort bringing back the green town which was before. Also new constructions in the city should be under control of the urban council.

Conclusion, recommendations and acknowledgment

This study clearly confirms a slightly degradation of the rainfall regime in Dschang and surroundings. But the situation is not yet worse.

Therefore, city administrators and urban council rulers could still prevent the worse level of deterioration which should be catastrophic not only for the whole sub region, but also for the neighboring countries as many foods are permanently transporting from here to different directions. They should the former look the city had before. The authors cease this opportunity to thank everyone who has provided them help of any form.

REFERENCES

- Njipouakouyou Samuel, Aoudou Doua Sylvain and Galmai Orozi. Investigating the minimal quantity of soil water reserve and its time tendency in N'djaména and surroundings – Chad. International Journal of Current Research, vol. 9, issue 07, July 2017, pp. 54482-54485.
- Njipouakouyou Samuel, Galmai Orozi, Aoudou Doua Sylvain, Yacoub Idriss halawlaw and Dokoubou Joseph Rodolphe. Determining the best seeding and duration of the cultivation period in N'djaména and surroundings – Chad. International Journal of Current Research, vol. 9, issue 09, September 2017, pp. 56894-56897.
- Njipouakouyou Samuel. *Time distribution of the rainfall in Bissau* from 1971 to 2015. International Journal of Current Research, vol. 11, issue 03, March 2019, pp. 1821-1823.
- Njipouakouyou Samuel, Galmai Orozi, Nchoutnji Ibrahim, Thierry Gaitan Tchuenga Seutchueng. *Diagnostic investigation of the seeding period in Foumbot and surroundings, West Region of Cameroon. Period: 2010 – 2018.* International Journal of Development Research, vol. 10, Issue 04, April 2020, pp. 35335-35442.
- Njipouakouyou Samuel and Noukeu Mbakop Jules Willy. Investigating the time trend of true agricultural seasons based on the rainfall and evapotranspiration data. Case of Ngaoundere areas in Adamaoua Region – Cameroon–Period from 1997 to 2016. International Journal of Science Academic Research, Vol. 02, Issue 08, August 2021, pp 2040-2042.