

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 14, Issue, 06, pp.21690-21698, June, 2022 DOI: https://doi.org/10.24941/ijcr.43705.06.2022 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

REVIEW ARTICLE

COMPLEX INTUTIONISTIC FUZZY SOFT MATRICES

*Chinnadurai, V., Madhanraj, S. and Thayalan, S.

Department of Mathematics, Annamalai University, Annamalainagar-608002, India

it to a decision making problem using different types of T-norm operators.

In this article, we define the concept of complexintuitionistic fuzzy soft matrices (CIFSMs) and

define some operations on these matrices. Also, we investigated some theoretical properties

onCIFSMs. In final, we develop an algorithm for complexintuitionistic fuzzy soft matrices and apply

ARTICLE INFO

ABSTRACT

Article History: Received 10th March, 2022 Received in revised form 09th April, 2022 Accepted 24th May, 2022 Published online 30th June, 2022

Key words:

Intuitionistic Fuzzy set, Intuitionistic fuzzy Matrices.Complex Fuzzy Set.

*Corresponding Author: Chinnadurai, V.,

Copyright©2022, Chinnadurai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Chinnadurai, V., Madhanraj, S. and Thayalan, S. 2022. "Complex intutionistic fuzzy soft matrices". International Journal of Current Research, 14, (06), 21690-21698.

INTRODUCTION

The fuzzy set (FS) was introduced by Zadeh (Zadeh, 1965), also he discussed the notion of linguistic variables. Atanassov (Atanassov, 1986; Atanassov, 1989; Atanassov, 2005), developed the fuzzy set and intuitionist fuzzy set (IFS), also he discussed the operators on interval valued intuitionistic fuzzy sets (IVIFSs).Bustince (Bustinceand, 1995) introduced the concept of correlation of intervalvalued intuitionistic fuzzy sets. In 1999, Molodtsov (Molodtsov, 1999) approaches the theory of soft set(SS) which has a rich potential for uncertainty and vagueness. Maji et al (2001) expanded the fuzzy set (FS) to fuzzy soft sets (FSS). Fuzzy matrices (FM) were introduced for the first time by Thomason (1977), he discussed the convergence of powers of fuzzy matrix. Fuzzy matrices engage in recreation to a vital role in scientific development. Intuitionistic fuzzy matrix was proposed by Pal and Khan (2002). Bhowmik (2008; Bhowmik, 2008) proposed the concept of generalized intuitionistic fuzzy matrices and also he investigated some results on intuitionistic fuzzy matrices and intuitionistic circulant fuzzy matrices. Cagman (Cagman, 2012) presented the theory of fuzzy soft matrix (FSM). Torra (2015) proposed the concept of hesistant fuzzy sets can be used as a functional tool allowing many potential membership degrees of an element to a set, these fuzzy sets having several membership degrees of an element to be possible between zero.Szmidt (Szmidt, 2012; Szmidt, 2010) apply the concept of intuitionistic fuzzy sets in group decision making and also he approaches the concept of correlation of intuitionistic fuzzy sets.Ramote et al. (2012) discussed complex fuzzy set ($\tilde{C}FS$), in which he presented new operations such as reflections and rotations. In recent years, Chinnadurai and Thayalan (Chinnadurai, 2021) studied the concept of complex interval-valued Pythagorean fuzzy set and its application. In this manuscript our intention is to define the concept of complex intuitionistic fuzzy soft matrices (CIFSMs). Further, we investigated some theoretical properties onCIFSMs.

PRELIMINERIES

We present some of the basic concepts which are required for this study. Let us consider the following notations through out this study unless otherwise specified. Let U be the universe, $u \in U$, A be a set of parameters, $EE \subseteq A$ and P(U) represent the set of all subsets of U. C(0,1) denotes the set of all closed sub-interval of (0,1).

Definition 2.1. (17) A fuzzy set is a set of the form $F = \{(u, \alpha_f(u)) | u \in U\}$, where $\alpha_f: U \to (0, 1)$ defines the degree of membership of the element $u \in U$.

Definition 2.2. (3) An intuitionistic fuzzy sets is an object of the form $T = \{(u, \alpha_T(u), \gamma_T(u) | u \in U)\}$, where $\alpha_T: U \to (0,1)$ and $\gamma_T: U \to (0,1)$ define the degree of membership and degree of non-membership of the element $u \in U, 0 \le \alpha_T(u) + \gamma_T(u) \le 1$, where $\pi_T(u) = 1 - \alpha_T(u) - \gamma_T(u)$ represents the degree of hesitancy.

Definition 2.3. (12)

Let $\rho_S(x) = \vartheta_S(x)e^{i\omega_S(x)}$ is a complex fuzzy set, where $\rho_S(x)$ is a amplitude of grade of membership belongs to (0,1) and $\omega_S(x)$ is a real valued function.

Complex intuitionistic fuzzy soft matrix

In this section, we introduce a new approach to complex intuitionistic fuzzy soft matrices.

Definition 3.1.

Let $U=\{u_1, u_2, ..., u_n\}$ be the universal set and E be the set of parameters given by $E=\{e_1, e_2, ..., e_n\}$ and $A \subseteq E$. Acomplexintuitionistic fuzzy soft matrix over U is defined as a pair (ϕ_{μ}, A) where ϕ_{μ} is a mapping given by, $\phi_{\mu}: A \rightarrow P^U$ and P^U is a power set of U, then the complex intuitionistic fuzzy soft set (ϕ_{μ}, A) can be expressed as a matrix form as,

 $(A_{m \times n}) = |A_{ij}|$ for i=1,2,...,m and j=1,2,...,n

where $|a_{ij}^{p}| = \{ < |\mu_{A}(e_{i}), \gamma_{A}(e_{i})|_{j} > \}$ and $\{ \{\mu_{A}(e_{i}), \gamma_{A}(e_{i})\}_{j} \text{ is complex intuitionistic fuzzy soft set) represent the element of } a_{i} \text{ corresponding to the element } a_{j} \text{ of U, fori=1,2,...,n} \text{ j=1,2,...,n} \text{ and } < |\mu_{A}(e_{i}), \gamma_{A}(e_{i})|_{j} > =\rho_{ij} \text{ such that } \rho_{ij} \in [0,1].i=1,2,...,m \text{ and } j=1,2,...,m \text{ and } j=1,2,...,m \text{ Also satisfying the condition that,} 0 \leq |\mu_{A}(e_{i})|_{j} + |\gamma_{A}(e_{i})|_{j} \leq 1, \text{ then A is an } (m \times n) \text{ complex intuitionistic fuzzy soft matrix (CIFSM).}$

Definition 3.2.

Let $A = (|\mu_A(e_i), \gamma_A(e_i)|_j)_{(m \times n)}$ be CIFSMs, then the complement of the CIFSMs is denoted by, $(A)^C = (|\gamma_A(e_i), \mu_A(e_i)|_j)_{(m \times n)}$ for all i,j.

3.3. Definition

The transpose of aCIFSM, $A_{(m \times n)}$ is obtained by interchanging rows and columns. It is denoted by $[(A_{m \times n})^T]$.

Example 3.4. Suppose that there are three houses under consideration namely the universes $U=\{h_1, h_2, h_3\}$ and the parameter set $E=\{e_1, e_2, e_3\}$, where e_i stands for Price, Quality of construction and Location respectively. Consider the mapping ϕ_{μ} which describes the "outlook of the houses" that is considering for purchase. Then fuzzy soft set (ϕ_{μ}, A) is given as,

$$\begin{aligned} (\phi_{\mu}, A) &= (<|\mu_{A}(e_{i}), \gamma_{A}(e_{i})|_{j} >)_{(m \times n)}, \text{where} \phi_{\mu}(e_{1}) = \{(R_{11}, |0.40e^{i\frac{\pi}{2}}, 0.60e^{i\frac{\pi}{3}}|, R_{12}, |0.50e^{i\frac{\pi}{6}}, 0.30e^{i\frac{\pi}{4}}|, \\ R_{13}, |0.70e^{i2\pi}, 0.30e^{i2\pi}|)\} \\ \phi_{\mu}(e_{2}) &= \{(R_{21}, |0.10e^{i\frac{\pi}{4}}, 0.10e^{i\frac{\pi}{3}}|, R_{22}, |0.20e^{i2\pi}, 0.50e^{i\frac{\pi}{6}}|, R_{23}, |0.60e^{i\frac{\pi}{3}}, 0.30e^{i\frac{\pi}{4}}|)\} \\ \phi_{\mu}(e_{3}) &= \{(R_{31}, |0.30e^{i\frac{\pi}{6}}, 0.70e^{i2\pi}|, R_{22}, |0.40e^{i\frac{\pi}{3}}, 0.40e^{i\frac{\pi}{6}}|, R_{33}, |0.70e^{i\frac{\pi}{4}}, 0.10e^{i\frac{\pi}{3}}|)\} \\ 0.40e^{i\frac{\pi}{2}} = 0.40(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = 0.40(0+i) = |0.4i| = \sqrt{0.16} = 0.4. \\ 0.60e^{i\frac{\pi}{3}} = 0.60(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}) = 0.60(0.5+0.86i) = |0.3+0.48i| = \sqrt{0.09 + 0.23} = 0.56. \\ 0.50e^{i\frac{\pi}{6}} = 0.50(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) = 0.50(0.86+i0.5) = |0.43+0.25i| = \sqrt{0.1849 + 0.0625} = 0.5. \\ 0.30e^{i\frac{\pi}{4}} = 0.30(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = 0.30(0.70+i0.70) = |0.21+0.21i| = \sqrt{0.04 + 0.04} = 0.3.0.70e^{i2\pi} = 0.70(\cos 2\pi + i\sin2\pi) = 0.70(0+i) \\ = |0.70i| = \sqrt{0.49} = 0.7 \\ 0.30e^{i2\pi} = 0.30(\cos 2\pi + i\sin2\pi) = 0.30(1+0i) = |0.30| = \sqrt{0.09} = 0.3. \end{aligned}$$

proceeding in this manner, we can find $\phi_{\mu}(e_2)$ and $\phi_{\mu}(e_3)$.Now we represent this complex intuitionistic fuzzy soft set in matrix form as,

$$(A_{m \times n}) = |a_{ij}^{P}| = \begin{cases} < [0.40, 0.56] > < [0.50, 0.30] > < [0.70, 0.30] > \\ < [0.09, 0.08] > < [0.20, 0.46] > < [0.56, 0.28] > \\ < [0.26, 0.70] > < [0.35, 0.31] > < [0.69, 0.08] > \end{cases}$$

$$\begin{split} &((A_{m \times n})^{c}) = |(a_{ij}^{p})^{c}| = \begin{bmatrix} < [0.56, 0.40] > < [0.30, 0.50] > < [0.30, 0.70] > \\ < [0.08, 0.09] > < [0.46, 0.20] > < [0.28, 0.56] > \\ < [0.70, 0.26] > < [0.31, 0.35] > < [0.08, 0.69] > \end{bmatrix} \\ &= [(A_{m \times n})^{T}] = |(a_{ij}^{p})^{T}| = \begin{bmatrix} < [0.40, 0.56] > < [0.09, 0.08] > < (0.26, 0.70) > \\ < [0.50, 0.30] > < [0.20, 0.46] > < (0.35, 0.31) > \\ < [0.70, 0.30] > < [0.56, 0.28] > < (0.69, 0.08) > \end{bmatrix} \end{split}$$

Definition 3.5.Let $A = |\mu_A(e_i), \gamma_A(e_i)|_j$ and $B = |\mu_B(e_i), \gamma_B(e_i)|_j$ be any two CIFSM, then the addition of A, B is followed by, $A + B = |\mu_A(e_i), \gamma_A(e_i)|_j + |\mu_B(e_i), \gamma_B(e_i)|_j$ $\Rightarrow (|\mu_A(e_i) + \mu_A(e_i)|_j, |\gamma_B(e_i) + \gamma_B(e_i)|_j)$

Example 3.6.

$$A = \begin{bmatrix} < [0.21, 0.18] > < (0.22, 0.12) > \\ < [0.19, 0.31] > < [0.26, 0.24] > \end{bmatrix}$$

$$B = \begin{bmatrix} < [0.20, 0.25] > < (0.24, 0.11) > \\ < [0.20, 0.27] > < [0.25, 0.20] > \end{bmatrix},$$

then A + B =
$$\begin{bmatrix} < [(0.21 + 0.20), (0.18 + 0.25)] > < ((0.22 + 0.24), (0.12 + 0.11)) > \\ < [(0.19 + 0.20), (0.31 + 0.27)] > < [(0.26 + 0.25), (0.24 + 0.20)] > \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} < [0.41, 0.43] > < (0.46, 0.23) > \\ < [0.39, 0.58] > < [0.51, 0.44] > \end{bmatrix}$$

Note:Let A and B are twoCIFSM, then the addition of A, BisA + B if A + B > 1, then we using the following condition (A + B)

$$\Rightarrow \frac{|\mu_{A}(e_{i}), \gamma_{A}(e_{i})|_{j} + |\mu_{B}(e_{i}), \gamma_{B}(e_{i})|_{j}}{2} \\ \Rightarrow \left[\frac{|\mu_{A}(e_{i}) + \mu_{A}(e_{i})|_{j}}{2}, \frac{|\gamma_{B}(e_{i}) + \gamma_{B}(e_{i})|_{j}}{2}\right]$$

Similarly, we adding threeCIFSMs, then the addition of A, B, C is A + B + C if A + B + C > 1, then we using the following condition

$$\Rightarrow \left[\frac{|\mu_A(e_i) + \mu_B(e_i) + \mu_C(e_i)|_j}{2}, \frac{|\gamma_A(e_i) + \gamma_B(e_i) + \gamma_C(e_i)|_j}{2}\right] \text{ Matrices addition is generalized by 'n' terms}$$
$$\Rightarrow \frac{(A + B + C + \dots + Z)}{n}$$

Definition 3.7. Let $A = |\mu_A(e_i), \gamma_A(e_i)|_j$ and $B = |\mu_B(e_i), \gamma_B(e_i)|_j$ be any two CIFSM, then the multiplication of A, B is followed by,

 $\begin{aligned} \mathbf{A} \cdot \mathbf{B} &= |\mu_A(e_i), \gamma_A(e_i)|_j \cdot |\mu_B(e_i), \gamma_B(e_i)|_j \\ \Rightarrow (|\mu_A(e_i), \mu_A(e_i)|_j, |\gamma_B(e_i), \gamma_B(e_i)|_j) \end{aligned}$

Example 3.8.

$$A = \begin{bmatrix} < [0.21, 0.18] > < (0.22, 0.12) > \\ < [0.19, 0.31] > < [0.26, 0.24] > \end{bmatrix}$$

$$B = \begin{bmatrix} < [0.20, 0.25] > < (0.24, 0.11) > \\ < [0.20, 0.27] > < [0.25, 0.20] > \end{bmatrix},$$

then A + B =
$$\begin{bmatrix} < [(0.21 \times 0.20), (0.18 \times 0.25)] > < ((0.22 \times 0.24), (0.12 \times 0.11)) > \\ < [(0.19 \times 0.20), (0.31 \times 0.27)] > < [(0.26 \times 0.25), (0.24 \times 0.20)] > \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} < [0.042, 0.045] > < (0.052, 0.013) > \\ < [0.038, 0.083] > < [0.065, 0.048] > \end{bmatrix}$$

Definition 3.9. Let $A = |\mu_A(e_i), \gamma_A(e_i)|_j$ and $B = |\mu_B(e_i), \gamma_B(e_i)|_j$ be any two CIFSM. Then(1)Union of A and B is denoted by, A VB is defined as

 $A \lor B = \max \{ |\mu_A(e_i), \mu_B(e_i)|_j \}, \max \{ |\gamma_A(e_i), \gamma_B(e_i)|_j \}$ (2)Intersection of A and B is denoted by, A \land B is defined as A \land B = min $\{ |\mu_A(e_i), \mu_B(e_i)|_j \}, \min \{ |\gamma_A(e_i), \gamma_B(e_i)|_j \}$

Definition3.10.

Let $A = (|\mu_P(e_i), \gamma_P(e_i)|_i)_{(n \times n)}$ be a CIFSM, then the trace of complex intuitionistic fuzzys off matrix is the sum of the elements of the principal diagonal elements of a square matrix is known as the trace of matrix. It is denoted by Tr(A). Where,

$$\operatorname{Tr} (\mathbf{A}) = \sum_{i,j=1}^{n} (|\mu_{A}(e_{1}), \gamma_{A}(e_{1})|_{1}) + (|\mu_{A}(e_{2}), \gamma_{A}(e_{2})|_{2}) + (|\mu_{A}(e_{3}), \gamma_{A}(e_{3})|_{3}) + \dots + (|\mu_{A}(e_{n}), \gamma_{A}(e_{n})|_{n})$$

Example 3.11. $(A_{n \times n}) = |a_{ij}^{p}| = \begin{bmatrix} < [0.21, 0.19] > < (0.23, 0.12) > \\ < [0.20, 0.32] > < [0.27, 0.25] > \end{bmatrix}$ Tr (A) = (< [0.21, 0.19] > +< [0.27, 0.25] >) = < [0.48, 0.44] >

Properties of complex intuitionistic fuzzy soft matricesIn this section, we investigate some properties for complex intuitionistic fuzzy soft matrices (CIFSMs).

Property 4.1.

Let A and Bbe twoCIFSM,

Consider A = $|\mu_A(e_i), \gamma_A(e_i)|_i$ and B = $|\mu_B(e_i), \gamma_B(e_i)|_i$ 1.(A + B) = (B + A) commutative under '+' ie., $|\mu_A(e_i), \gamma_A(e_i)|_j + |\mu_B(e_i), \gamma_B(e_i)|_j = |\mu_B(e_i), \gamma_B(e_i)|_j + |\mu_A(e_i), \gamma_A(e_i)|_j$ for all i.j. ·+' 2. (A + B) + C = A + (B + C)associative under ie.. $\left(|\mu_{A}(e_{i}),\gamma_{A}(e_{i})|_{j}+|\mu_{B}(e_{i}),\gamma_{B}(e_{i})|_{j}\right)+|\mu_{C}(e_{i}),\gamma_{C}(e_{i})|_{j}=|\mu_{A}(e_{i}),\gamma_{A}(e_{i})|_{j}+\left(|\mu_{B}(e_{i}),\gamma_{B}(e_{i})|_{j}+|\mu_{C}(e_{i}),\gamma_{C}(e_{i})|_{j}\right)$ for all i.j. 3. (A. B) = (B. A) commutative under '.' ie., $|\mu_A(e_i), \gamma_A(e_i)|_i$. $|\mu_B(e_i), \gamma_B(e_i)|_i = |\mu_B(e_i), \gamma_B(e_i)|_i$. $|\mu_A(e_i), \gamma_A(e_i)|_i$ for all i,j. 4. (A.B). C= A.(B.C) associative under '.' ie., $(|\mu_A(e_i), \gamma_A(e_i)|_i, |\mu_B(e_i), \gamma_B(e_i)|_i), |\mu_C(e_i), \gamma_C(e_i)|_i = |\mu_A(e_i), \gamma_A(e_i)|_i.$ $(|\mu_B(e_i), \gamma_B(e_i)|_i, |\mu_C(e_i), \gamma_C(e_i)|_i)$ for all i,j. 5.A.(B + C) = (A.B) + (A.C) distributive under (+,.) $|\mu_{A}(e_{i}), \gamma_{A}(e_{i})|_{i} \cdot (|\mu_{B}(e_{i}), \gamma_{B}(e_{i})|_{i} + |\mu_{C}(e_{i}), \gamma_{C}(e_{i})|_{i})$ $= (|\mu_A(e_i), \gamma_A(e_i)|_i, |\mu_B(e_i), \gamma_B(e_i)|_i) + (|\mu_A(e_i), \gamma_A(e_i)|_i, |\mu_C(e_i), \gamma_C(e_i)|_i) \text{ for all } i, j.$

Property 4.2.

Let A, B \in (CIFSM)_{$m \times n$} (*i*)A \vee B = B \vee A (*ii*)A \wedge B = B \wedge A

Proof:

Let $A = |\mu_A(e_i), \gamma_A(e_i)|_j$, $B = |\mu_B(e_i), \gamma_B(e_i)|_j$ (*i*) $A \lor B = |\mu_A(e_i), \gamma_A(e_i)|_j \lor |\mu_B(e_i), \gamma_B(e_i)|_j$ $\Rightarrow \max \{|\mu_A(e_i), \gamma_A(e_i)|_j, |\mu_B(e_i), \gamma_B(e_i)|_j\}.$ $\Rightarrow \max |\mu_A(e_i), \mu_B(e_i)|_j, \max |\gamma_A(e_i), \gamma_B(e_i)|_j$ $\Rightarrow \max |\mu_B(e_i), \mu_A(e_i)|_j, \max |\gamma_B(e_i), \gamma_A(e_i)|_j$ Hence $A \lor B = B \lor A$ (*ii*) $A \land B = |\mu_A(e_i), \gamma_A(e_i)|_j \land |\mu_B(e_i), \gamma_B(e_i)|_j$. $\Rightarrow \min \{|\mu_A(e_i), \mu_A(e_i)|_j, |\mu_B(e_i), \gamma_B(e_i)|_j\}.$ $\Rightarrow \min |\mu_A(e_i), \mu_A(e_i)|_j, \min |\gamma_B(e_i), \gamma_B(e_i)|_j$ $\Rightarrow \min |\mu_B(e_i), \mu_A(e_i)|_j, \min |\gamma_B(e_i), \gamma_A(e_i)|_j$ $\Rightarrow |\mu_B(e_i), \gamma_A(e_i)|_j \land |\mu_B(e_i), \gamma_A(e_i)|_j$ Hence $A \lor B = B \land A$

Property 4.3.

Let A, B and C \in (CIFSM)_{$m \times n$}. Then

(i) $(A + B) \lor (B + C) = (A + B) \lor (A + C)$, whenever $C \ge A \ge B$ (ii) $(A + B) \lor (B + C) = (A + C) \lor (B + C)$, whenever $A \ge B \ge C$ (iii) $(A + B) \land (B + C) = (A + C) \land (B + C)$, whenever $A \le C \le B$ (iv) $(A + B) \land (B + C) = (A + B) \land (A + C)$, whenever $C \ge A \ge B$

Proof:

Let $A = |\mu_A(e_i), \gamma_A(e_i)|_i$, $B = |\mu_B(e_i), \gamma_B(e_i)|_i$, $C = |\mu_C(e_i), \gamma_C(e_i)|_i$ (i)L.H.S \Rightarrow (A + B) \lor (B + C) = ($|\mu_A(e_i), \gamma_A(e_i)|_i$ + $|\mu_B(e_i), \gamma_B(e_i)|_i$ \lor $(|\mu_B(e_i), \gamma_B(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i)$ \Rightarrow $\max\{(|\mu_A(e_i), \mu_B(e_i)|_i, |\gamma_A(e_i), \gamma_B(e_i)|_i)\} + \max\{(|\mu_B(e_i), \mu_C(e_i)|_i, |\gamma_B(e_i), \gamma_C(e_i)|_i)\} \text{ From the hypothesis, } C \ge A \ge BL.H.S = BL.H.S$ $|\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i$ Now, $\text{R.H.S} \Rightarrow (A + B) \lor (A + C) = \left(|\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_B(e_i), \gamma_B(e_i)|_i \right) \lor \left(|\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i \right) \Rightarrow \max$ {($|\mu_A(e_i), \mu_B(e_i)|_i, |\gamma_A(e_i), \gamma_B(e_i)|_i) \} + \max \{ (|\mu_A(e_i), \mu_C(e_i)|_i, |\gamma_A(e_i), \gamma_C(e_i)|_i) \}$ Again from the hypothesis, $C \ge A \ge BR.H.S$ $= |\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i$ Which implies that, L.H.S=R.H.SHence (A + B) \vee (B + C) = (A + B) \vee (A + C). $(ii)L.H.S \Rightarrow (A + B) \lor (B + C) = \left(|\mu_A(e_i), \gamma_A(e_i)|_j + |\mu_B(e_i), \gamma_B(e_i)|_j \right) \lor \left(|\mu_B(e_i), \gamma_B(e_i)|_j + |\mu_C(e_i), \gamma_C(e_i)|_j \right) \Rightarrow$ $\max\{(|\mu_A(e_i), \mu_B(e_i)|_i, |\gamma_A(e_i), \gamma_B(e_i)|_i)\} + \max\{(|\mu_B(e_i), \mu_C(e_i)|_i, |\gamma_B(e_i), \gamma_C(e_i)|_i)\}$ From the hypothesis, $A \ge B \ge A$ $CL.H.S = |\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i \text{ Now, R.H.S} \Rightarrow (A + C) \lor (B + C) = \max\{ (|\mu_A(e_i), \mu_C(e_i)|_i, |\gamma_A(e_i), \gamma_C(e_i)|_i) \} + |\mu_C(e_i), \gamma_C(e_i)|_i \} + |\mu_C(e_i), \gamma_C(e_i)|_i \}$ $\max \{ (|\mu_{B}(e_{i}), \mu_{C}(e_{i})|_{j}, |\gamma_{B}(e_{i}), \gamma_{C}(e_{i})|_{j}) \} \Rightarrow \max \{ (|\mu_{A}(e_{i}), \mu_{C}(e_{i})|_{j}, |\gamma_{A}(e_{i}), \gamma_{C}(e_{i})|_{j}) \} + \max \{ (|\mu_{B}(e_{i}), \mu_{C}(e_{i})|_{j}) \}$ $|\gamma_B(e_i), \gamma_C(e_i)|_i$ } Again from the hypothesis, $A \ge B \ge C \Rightarrow |\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i$ Which implies that, L.H.S=R.H.SHence $(A + B) \lor (B + C) = (A + C) \lor (B + C)$. (iii)L.H.S \Rightarrow (A + B) \land (B + C) = $(|\mu_A(e_i), \gamma_A(e_i)|_j + |\mu_B(e_i), \gamma_B(e_i)|_j) \wedge (|\mu_B(e_i), \gamma_B(e_i)|_j +$ $|\mu_{\mathcal{C}}(e_i), \gamma_{\mathcal{C}}(e_i)|_i) \Rightarrow \min\{(|\mu_A(e_i), \mu_B(e_i)|_i, |\gamma_A(e_i), \gamma_B(e_i)|_i)\} + \min\{(|\mu_B(e_i), \mu_{\mathcal{C}}(e_i)|_i, |\gamma_B(e_i), \gamma_{\mathcal{C}}(e_i)|_i)\}$ From the hypothesis, $A \le 1$ $C \leq B \Rightarrow |\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i L.H.S = |\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i Now, R.H.S \Rightarrow (A + C) \land (B + C) = \min\{a_i \in A_i : i \in A_i \in A_i \} | a_i \in A_i \in A_i \}$ $(|\mu_{A}(e_{i}),\mu_{C}(e_{i})|_{i},|\gamma_{A}(e_{i}),\gamma_{C}(e_{i})|_{i})\} + \min\{(|\mu_{B}(e_{i}),\mu_{C}(e_{i})|_{i},|\gamma_{B}(e_{i}),\gamma_{C}(e_{i})|_{i})\} \Rightarrow \min\{(|\mu_{A}(e_{i}),\mu_{C}(e_{i})|_{i},|\gamma_{A}(e_{i}),\gamma_{C}(e_{i})|_{i})\}$ $\} + \min\{ (|\mu_B(e_i), \mu_C(e_i)|_i, |\gamma_B(e_i), \gamma_C(e_i)|_i) \}$ Again from the hypothesis, $A \le C \le B$ $\Rightarrow |\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i \text{ Which implies that, L.H.S} = \text{R.H.S Hence (A + B)} \land (B + C) = (A + C) \land (B + C).$ (iv) $L.H.S \Rightarrow (A + B) \land (B + C) =$ $(|\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_B(e_i), \gamma_B(e_i)|_i) \wedge (|\mu_B(e_i), \gamma_B(e_i)|_i +$ $|\mu_{C}(e_{i}), \gamma_{C}(e_{i})|_{i}) \Rightarrow \min\{(|\mu_{A}(e_{i}), \mu_{B}(e_{i})|_{i}, |\gamma_{A}(e_{i}), \gamma_{B}(e_{i})|_{i})\} + \min\{(|\mu_{B}(e_{i}), \mu_{C}(e_{i})|_{i}, |\gamma_{B}(e_{i}), \gamma_{C}(e_{i})|_{i})\}$ the From $hypothesis, C \ge A \ge B \Rightarrow |\mu_A(e_i), \gamma_A(e_i)|_j + |\mu_C(e_i), \gamma_C(e_i)|_j \quad L.H.S = |\mu_A(e_i), \gamma_A(e_i)|_j + |\mu_C(e_i), \gamma_C(e_i)|_j \quad Now, \quad R.H.S \Rightarrow (A + i) \leq |\mu_A(e_i), \mu_A(e_i)|_j + |\mu_C(e_i), \mu_A(e_i)|_j + |\mu_A(e_i), \mu$ B) $\wedge (A + C) = \min\{ (|\mu_A(e_i), \mu_B(e_i)|_i, |\gamma_A(e_i), \gamma_B(e_i)|_i) \} + \min\{ (|\mu_A(e_i), \mu_C(e_i)|_i, |\gamma_A(e_i), \gamma_C(e_i)|_i) \} \Rightarrow \min\{ (|\mu_A(e_i), \mu_B(e_i)|_i, |\gamma_A(e_i), \gamma_B(e_i)|_i) \} \Rightarrow \min\{ (|\mu_A(e_i), \mu_B(e_i)|_i) \}$ $|\mu_A(e_i), \mu_B(e_i)|_i, |\gamma_A(e_i), \gamma_B(e_i)|_i) \} + \min\{ (|\mu_A(e_i), \mu_C(e_i)|_i, |\gamma_A(e_i), \gamma_C(e_i)|_i) \}$ Again from the hypothesis, $C \ge A \ge B \Rightarrow$

 $|\mu_A(e_i), \gamma_A(e_i)|_i + |\mu_C(e_i), \gamma_C(e_i)|_i$ Which implies that, L.H.S = R.H.SHence (A + B) \land (B + C) = (A + B) \land (A + C).

Property 4.4.

Let $A, B \in (CIFSM)_{m \times n}$. Then the following conditions are holds (i) $(A^T)^T = A$ (ii) $(A + B)^T = (A)^T + (B)^T$ (iii) $k(A)^T = (kA)^T$ (iv) $(AB)^T = (B)^T (A)^T$ Proof: Straight forward

Property 4.5.

(i) Tr $A \neq Tr A^{C}$ (ii) (Tr A)^{*c*} = Tr A^{C} (iii) Tr ($A+A^{C}$) = Tr $A + Tr A^{C}$ (iv) Tr (λA) = λ Tr A(v) Tr (A + B) = Tr A + Tr B(vi) Tr (AB) = Tr (BA) (vii) Tr (ABCD) = Tr (BCDA) = Tr (CDAB) = Tr (DABC) Proof: Straight forward

Application of complex intuitionistic fuzzy soft square matrices (CIFSSMs) in Decision Making Based on T-norm operators.

In this section, we construct omplex intuitionistic fuzzy soft square matrices in decision making by using different t-norm operators.

Definition 5.1. Let us discuss the t-norm minimum operator of CIFSSMs

 $\tilde{T}^{M} \big(|\mu_{1}(e_{i}), \gamma_{1}(e_{i})|_{j}, |\mu_{2}(e_{i}), \gamma_{2}(e_{i})|_{j}, \dots, |\mu_{n}(e_{i}), \gamma_{n}(e_{i})|_{j} \big) = \min \big(|\mu_{1}(e_{i}), \gamma_{1}(e_{i})|_{j}, |\mu_{2}(e_{i}), \gamma_{2}(e_{i})|_{j}, \dots, |\mu_{n}(e_{i}), \gamma_{n}(e_{i})|_{j} \big) \Rightarrow \min \big(|\mu_{1}(e_{i}), \mu_{2}(e_{i}), \dots, \mu_{n}(e_{i})|_{j} \big), \min \big(|\gamma_{1}(e_{i}), \gamma_{2}(e_{i}), \dots, \gamma_{n}(e_{i})|_{j} \big)$

Definition 5.2. Let us discuss the t-norm product operator of CIFSSMs

$$\begin{split} \tilde{T}^{p}\left(\left(|\mu_{1}(e_{i}),\gamma_{1}(e_{i})|_{j},|\mu_{2}(e_{i}),\gamma_{2}(e_{i})|_{j},\ldots,|\mu_{n}(e_{i}),\gamma_{n}(e_{i})|_{j}\right)\right) = \\ &\prod_{i,j=1}^{n} \left\{\left(|\mu_{1}(e_{i}),\gamma_{1}(e_{i})|_{j},|\mu_{2}(e_{i}),\gamma_{2}(e_{i})|_{j},\ldots,|\mu_{n}(e_{i}),\gamma_{n}(e_{i})|_{j}\right)\right\} \\ \Rightarrow &\prod_{i,j=1}^{n} \left(|\mu_{1}(e_{i}),\mu_{2}(e_{i}),\ldots,\mu_{n}(e_{i})|_{j}\right),\prod_{i,j=1}^{n} \left(|\gamma_{1}(e_{i}),\gamma_{2}(e_{i}),\ldots,\gamma_{n}(e_{i})|_{j}\right)\right) \end{split}$$

Definition 5.3. Let us discuss the t-norm Bounded operator of CIFSSMs

$$\begin{split} \tilde{T}^{B}\left(\left(|\mu_{1}(e_{i}),\gamma_{1}(e_{i})|_{j},|\mu_{2}(e_{i}),\gamma_{2}(e_{i})|_{j},\ldots,|\mu_{n}(e_{i}),\gamma_{n}(e_{i})|_{j}\right)\right) = \\ & \frac{1}{n} \left\{ \sum_{i,j=1}^{n} \left\{ \left(\left\{ \mu_{1}(e_{i}),\gamma_{1}(e_{i})\right\}_{j},\left\{ \mu_{2}(e_{i}),\gamma_{2}(e_{i})\right\}_{j},\ldots,\left\{ \mu_{n}(e_{i}),\gamma_{n}(e_{i})\right\}_{j} \right\} \right\}^{\frac{1}{n}} \\ & \Rightarrow \frac{1}{n} \left\{ \sum_{i,j=1}^{n} \left\{ \mu_{1}(e_{i}),\mu_{2}(e_{i}),\ldots,\mu_{n}(e_{i})\right\}_{j}^{\frac{1}{n}},\sum_{i,j=1}^{n} \left\{ \gamma_{1}(e_{i}),\gamma_{2}(e_{i}),\ldots,\gamma_{n}(e_{i})\right\}_{j}^{\frac{1}{n}} \right\} \end{split}$$

Definition 5.4. Arithmetic mean (A.M) of CIFSSMs

 $A_{AM} = \frac{|\mu_P(e_i) + \gamma_P(e_i)|_j}{2}$ **Definition 5.5.** Geometric mean (G.M) of CIFSSMs $A_{GM} = \{\{\mu_P(e_i), \gamma_P(e_i)\}_j\}^{\frac{1}{2}}$

Algorithm

Step-1: Choose the set of parameters

Step-2: Construct the complexintuitionistic fuzzy softsquare matrices.

Step-3: Compute \tilde{T}^M , \tilde{T}^P and \tilde{T}^B

Step-4: Compute the membership value of the complex intuitionistic fuzzy soft square matrix of thearithmetic mean and geometric mean as $A_{AM}(\tilde{T}^M)$, $A_{AM}(\tilde{T}^P)$, $A_{AM}(\tilde{T}^L)$ and $A_{GM}(\tilde{T}^M)$, $A_{GM}(\tilde{T}^L)$ respectively.

Step-5: Find the highest membership value.

Statement of the problemSuppose a mobile production company produces four types of mobiles m_1, m_2, m_3, m_4 such that $M = \{m_1, m_2, m_3, m_4\}$ and $S = \{s_1, s_2, s_3, s_4\}$ be the set of parameters. Here, we just explained the four types of parameters as followed by $s_1 = multiple$ windows, $s_2 = matrix control$, $s_3 = matrix control$, $s_4 = matrix control$, $s_4 = matrix control$.

```
(1) Form CIFSSMsas
```

A =	< (0.25,0.64) >	< (0.34,0.53) >	< (0.36,0.64) >	< (0.39,0.48) >
	< (0.61,0.38) >	< (0.36,0.49) >	< (0.32,0.50) >	< (0.41,0.47) >
	< (0.43,0.06) >	< (0.73,0.09) >	< (0.64,0.21) >	< (0.48,0.38) >
	< (0.42,0.25) >	< (0.45,0.40) >	< (0.28,0.72) >	< (0.52,0.25) >
B =	< (0.69,0.23) >	< (0.54,0.33) >	< (0.23,0.57) >	< (0.63,0.12) >
	< (0.34,0.63) >	< (0.37,0.34) >	< (0.35,0.60) >	< (0.14,0.28) >
	< (0.61,0.12) >	< (0.25,0.70) >	< (0.42,0.25) >	< (0.38,0.46) >
	< (0.55,0.45) >	< (0.50,0.48) >	< (0.56,0.34) >	< (0.69,0.29) >
<i>C</i> =	< (0.51,0.34) >	< (0.33,0.34) >	< (0.61,0.36) >	< (0.91,0.09) > إ
	< (0.66,0.25) >	< (0.56,0.41) >	< (0.33,0.43) >	< (0.79,0.21) >
	< (0.42,0.44) >	< (0.46,0.37) >	< (0.68,0.25) >	< (0.40,0.33) >
	< (0.44,0.45) >	< (0.70,0.30) >	< (0.37,0.43) >	< (0.25,0.61) >

 $D = \begin{bmatrix} < (0.40, 0.37) > & < (0.23, 0.54) > & < (0.47, 0.11) > & < (0.32, 0.33) > \\ < (0.46, 0.54) > & < (0.40, 0.33) > & < (0.41, 0.39) > & < (0.46, 0.34) > \\ < (0.71, 0.28) > & < (0.12, 0.88) > & < (0.01, 0.81) > & < (0.93, 0.07) > \\ < (0.37, 0.49) > & < (0.72, 0.23) > & < (0.45, 0.36) > & < (0.01, 0.99) > \end{bmatrix}$

(2) Using Definition 5.1, the computation of \tilde{T}^M is as below:

 $\tilde{T}^{M} = \begin{bmatrix} < (0.40, 0.23) > & < (0.23, 0.33) > < (0.23, 0.11) > & < (0.32, 0.09) > \\ < (0.46, 0.25) > & < (0.36, 0.33) > < (0.32, 0.39) > & < (0.14, 0.21) > \\ < (0.42, 0.06) > & < (0.12, 0.09) > < (0.01, 0.21) > & < (0.38, 0.07) > \\ < (0.37, 0.25) > & < (0.45, 0.23) > < (0.28, 0.34) > & < (0.01, 0.25) > \end{bmatrix}$

(3) Using Definition 5.4, the computation of $AM(\tilde{T}^M)$ is as below:

 $\mathrm{AM}\;(\tilde{T}^{M}) = \begin{cases} < 0.32\; 0.28\; 0.17\; 0.20 > \\ < 0.35\; 0.34\; 0.35\; 0.17 > \\ < 0.24\; 0.10\; 0.11\; 0.22 > \\ < 0.31\; 0.34\; 0.31\; 0.13 > \end{cases}$

(4) Add each entries and find the highest value for $AM(\tilde{T}^M)$

	[0.97]
_	1.21
_	0.67
	1.09

(5) Using Definition 5.5, the computation of $GM(\tilde{T}^M)$ is as below:

 $\mathrm{GM}\;(\tilde{T}^{M}) = \begin{cases} < 0.30\; 0.27\; 0.15\; 0.16 > \\ < 0.33\; 0.34\; 0.35\; 0.17 > \\ < 0.15\; 0.10\; 0.04\; 0.16 > \\ < 0.30\; 0.32\; 0.30\; 0.05 > \end{cases}$

(6) Add each entries and find the highest value for $GM(\tilde{T}^M)$

```
= \begin{bmatrix} 0.88\\ 1.19\\ 0.45\\ 0.97 \end{bmatrix}
```

From AM (\tilde{T}^M) and GM (\tilde{T}^M) , it is obvious that m_4 mobile will be preferred. If \tilde{T}^P and \tilde{T}^B are used instead of \tilde{T}^M , then we have

(7) Using Definition 5.2, the computation of \tilde{T}^P is as below:

```
\tilde{T}^{p} = \begin{bmatrix} < (0.0351, 0.0185) > & < (0.0139, 0.0321) > < (0.0237, 0.0144) > & < (0.0715, 0.0017) > \\ < (0.0629, 0.0323) > & < (0.0298, 0.0225) > < (0.0715, 0.0503) > & < (0.0208, 0.0093) > \\ < (0.0782, 0.0008) > & < (0.0100, 0.0205) > < (0.0018, 0.0106) > & < (0.0678, 0.0040) > \\ < (0.0376, 0.0248) > & < (0.1134, 0.0132) > < (0.0261, 0.0378) > & < (0.0008, 0.0437) > \end{bmatrix}
```

(8) Using Definition 5.4, the computation of $AM(\tilde{T}^P)$ is as below:

 $\mathrm{AM}\;(\tilde{T}^P) = \begin{bmatrix} < 0.0268\; 0.0230\; 0.0190\; 0.0366 > \\ < 0.0476\; 0.0261\; 0.0609\; 0.0150 > \\ < 0.0395\; 0.0152\; 0.0062\; 0.0359 > \\ < 0.0312\; 0.0633\; 0.0319\; 0.0225 > \end{bmatrix}$

(9) Add each entries and find the highest value for $AM(\tilde{T}^P)$

 $= \begin{bmatrix} 0.1054\\ 0.1496\\ 0.0968\\ 0.1489 \end{bmatrix}$

(10) Using Definition 5.5, the computation of $GM(\tilde{T}^P)$ is as below:

 $\mathrm{GM}\;(\tilde{T}^P) = \begin{bmatrix} < 0.0254\; 0.0211\; 0.0184\; 0.0110 > \\ < 0.0450\; 0.0258\; 0.0599\; 0.0139 > \\ < 0.0079\; 0.0143\; 0.0043\; 0.0164 > \\ < 0.0305\; 0.0386\; 0.0314\; 0.0059 > \end{bmatrix}$

(11) Add each entries and find the highest value for $GM(\tilde{T}^P)$

```
= \begin{bmatrix} 0.0759\\ 0.1446\\ 0.0429\\ 0.1064 \end{bmatrix}
```

From AM (\tilde{T}^{P}) and GM (\tilde{T}^{P}) , it is obvious that m_{2} mobile will be preferred.

(12) Using Definition 5.3, the computation of \tilde{T}^B is as below:

 $\tilde{T}^B = \begin{bmatrix} < (0.29, 0.28) > & < (0.27, 0.28) > < (0.28, 0.28) > & < (0.30, 0.25) > \\ < (0.29, 0.28) > & < (0.28, 0.27) > < (0.27, 0.29) > & < (0.28, 0.26) > \\ < (0.30, 0.24) > & < (0.27, 0.29) > < (0.28, 0.27) > & < (0.30, 0.26) > \\ < (0.28, 0.28) > & < (0.31, 0.27) > < (0.28, 0.29) > & < (0.27, 0.30) > \end{bmatrix}$

(13) Using Definition 5.4, the computation of $AM(\tilde{T}^B)$ is as below:

 $\mathrm{AM}\;(\tilde{T}^B) = \begin{bmatrix} < 0.29\; 0.28\; 0.28\; 0.28\; 0.28 > \\ < 0.29\; 0.28\; 0.28\; 0.28\; 0.27 > \\ < 0.27\; 0.28\; 0.28\; 0.28\; 0.28 > \\ < 0.28\; 0.29\; 0.29\; 0.29\; 0.29 > \end{bmatrix}$

(14) Add each entries and find the highest value for $AM(\tilde{T}^B)$

```
= \begin{bmatrix} 1.13\\ 1.12\\ 1.11\\ 1.15 \end{bmatrix}
```

(15) Using Definition 5.5, the computation of $GM(\tilde{T}^B)$ is as below:

 $\mathrm{GM}(\tilde{T}^B) = \begin{bmatrix} < 0.28 \ 0.27 \ 0.28 \ 0.27 \ 0.28 \ 0.27 \ 0.26 \ > \\ < 0.28 \ 0.27 \ 0.27 \ 0.27 \ 0.26 \ > \\ < 0.26 \ 0.27 \ 0.27 \ 0.27 \ > \\ < 0.28 \ 0.28 \ 0.28 \ 0.28 \ 0.28 \ > \end{bmatrix}$

(16) Add each entries and find the highest value for $GM(\tilde{T}^B)$

```
= \begin{bmatrix} 1.10\\ 1.08\\ 1.07\\ 1.12 \end{bmatrix}
```

From AM (\tilde{T}^B) and GM (\tilde{T}^B), it is obvious that m_4 mobile will be preferred.

CONCLUSION

In this document, we investigated some properties of complex intuitionistic fuzzy soft square matrix theory with suitable examples. Further, we constructed complex intuitionistic fuzzy soft square matrices in decision making based on T-norm operators. We hope that our finding will help to enhancing the study on fuzzy soft matrix theory and will open a new direction for applications especially in decision analysis. In future, we extended this concept in complex Pythagorean fuzzy soft matrix theory.

REFERENCES

Atanassov, K. 1986. "Intuitionisticfuzzy sets, Fuzzy Sets and Systems, 20),87-96.

Atanassov K. and Gargov, G. 1989. Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems31 (1989), 343-349.

- Atanassov, K., Pasi, G. and Yager, R.R. 2005. "Intuitionistic fuzzy interpretationsof multi- criteriamulti-person and multimeasurement tool decision making", *International Journal of Systems Science*, 36 (2005), 859–868.
- Bhowmik M, Pal M, 2008. "Generalized intuitionistic fuzzy matrices", Far East J Math Sci, 29 533-554.
- Bhowmik. M., Pal. M. 2008. "Some results on intuitionistic fuzzy matrices and intuitionistic circulant fuzzy matrices", *Int J Math Sci*, 7 (2008) 81–96.
- Bustinceand H., Burillo, P.1995. Correlation of intervalvalued intuitionistic fuzzy sets, Fuzzy Set and Systems, 74, 237-244.
- Cagman, N., Enginoglu, S. 2012. "Fuzzy soft matrix theory and its application in decision-making", *Iranian Journal of Fuzzy* Systems, 9(1), 109-119.
- Chinnadurai, V., Thayalanand S., Bobin, A. 2021. "Some Operations of complex interval-valued Pythagorean fuzzy set and its application". *Communications inMathematics andApplications*, 2021, volume 12, pp. 483–497.
- Maji, K., Biswas, R., Roy, A.R., 2001. "Fuzzy soft sets", Journal of Fuzzy Mathematics, 9(3), 589-602.
- Molodtsov, D. "Softset theoryfirst result", Computer and mathematics with applications, 37(1999), 19-31.
- Pal M, Khan S.K., Shyama A.K. 2002. "Intuitionistic Fuzzy Matrices", Notes on Intuitionistic Fuzzy Sets, 8(2) 51-62.
- Ramot, D., Milo, R., Friedman, M. and Kandel, A. 2012. "Complex fuzzy sets", *IEEE Trans Fuzzy Syst.*, volume 10, pp. 171–186. Szmidt E. and Kacprzyk, J. 2002. Using intuitionistic fuzzy sets in group decision making, *Control and Cybernetics*, 31 1037–1053.
- Szmidt E. and Kacprzyk, J. 2010. Correlation of intuitionistic fuzzy sets, *Lectuer Notes in Computer Science*, 6178 169–177. Torra V, Hesitant fuzzy sets. *Int JIntellSyst*, 25, 529–539.
- Thomason M.G. 1977. "Convergence of powers of fuzzy matrix", J. Mathematical Analysis and Applications, 57 476-480. Zadeh. L. A. 1965. "Fuzzy sets", Information and Control, 8, 330-353.