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1. INTRODUCTION

Let a, ', B, f,ne Candx > 0, then the generalized fractional calculus operators involving Appell function Fj are defined
by Saigo and Maeda [9] by means of the following equations:

(ILPP ) (x) = lf(_a)f(X—t)’H;-a' Fya,a' B, i m; 1—t/x, 1-x/0fds,  RO)>0,  ceeeeeeren (1.1)
mo

AESPPN ) (x) = ;( )Of(t—x)”‘lt‘“F3(a,a’,ﬁ, B 1=xjt, 1=¢/x)f(@O)dt,  R@p)>0, (1.2)
M

The general class of polynomials is defined by Srivastava [16, p.1, Eq. (1)] in the following manner:
[w/ul (=w)

Selx] =Y A4, x°, w=0,1,2,.... (1.3)
s=0 s! ’
where u is an arbitrary positive integer and the coefficients A w,s (W, s 2 () are arbitrary constants, real or complex.
The series representation of N-function is introduced by Chaurasia et al. [2] as follow:
k ~m,n
mn (aj’aj )1,,,""’[71' (a./'i’a./'i )]”H’pi;" (_ 1) Ql’rqi’ri;’ (g) (1.4)

_ X —C
Npl.,ql-,ri;r Z(bj’ﬁj)1,m""9[Ti(bﬁ’ﬂﬁ)]mﬂ,qi;r kz=:0hz=:1 ﬂhk' (Z) ’
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b, +k

with § = z| <1 and

s Pi < q;,

N L 2L R L e T 15
ZTH] m+1 ( lgﬂg) Jj= n+l (a +a]z§)

The existence of the ¥ -function defined on (1.4) depends on the following conditions.

V4
(Pl 2¢l> 121,...,}”, ............... (16)
and
020 ’2’¢,, I=1,...r R()+1<0, (1.7)
where
n m Py 91
p=ro;+Xpi-nl Xayt+t X Byl (1.8)
Jj=1 j=1 j=n+1 j=m+1
and
m n q Py 1
g=2b;—2a;+7| X b;y— X ay +5(P1 —611), [=1,..,re . (1.9
Jj=1 j=1 j=m+l j=n+1

For the convergence conditions and other details of Aleph-function, (see: S dland et al. [18], [19]) and is defined in terms of the
Mellin- Barnes type integrals as following manner (see, e.g., [12], [13]).

Remark 1.1 On setting 7; =1(i =1,...,7) in (1.4), yields the I-function due to Saxena [11], defined in following manner:

(a] ,0-’] )Ln ,-.-,[(aji,aji )]nJeri

e Jl=won L lE=wne o)l ),

= —[Qm" _‘(g)zfgdg_ ...................... (1.10)

P[,qi,l,'

Remark 1.2 If we set 7; =1(i =1,...,r) and r =1, then (1.4) reduces to the familiar Fox H-function [3]:

EZ]’ZJH_L.ILQm’n (C)4dc. (1.11)
J>

m,n m,n m,n
H [Z] sz’qz’ll[] N!’rqm;l{

are the kernel QZ_’"q . (¢) can be obtained from (1.5).
i°1i°1;

A thorough and wide-ranging account of the H-function is obtainable from the monographs written by Kilbas and Saigo [4],
Mathai et al. [6], Prudnikov et al. [7] and Srivastava et al. [17].

Now, we recall the generaliged hypergeometric series defined by (see: [5, 8]):
Q15 Ups 2 (al)n"'(ap)nzn
z|=3 = F (ap,.cc. 03 Brsec s BriZ)y (1.12)
P q|:ﬂ1’ ﬂq; i| 1=0(ﬂ1)n"'(ﬂq)nn! P i 1
where (4),, is the Pochhammer symbol defined (for 1 € C) by

(A ={1 (2=0) =M, ........................ (1.13)
AA+1D)...A+n-1) (neN={123...1) TL(A)

We now establish:

Lemma 1: If R(y)>0,0 >0, € =1,2,3, ..., cis apositive number and p is a complex number, then there holds the relation

(15‘;”" BB 0 (o 4 )P ])(x) _ Gadn ep Io+HT(o-d+F+)T(6—a—d - p+n+])
I+ +)I'(6—a-d+n+1)T(6—d —p+n+1)
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p,ANe,d—a—-a —B+n+1), A(g,A+1), A(g, 0+ —a'+1); (xjg
c

X3£+1F3£ ’ ' ' . -
ANe,d—a—-a +n+1), A(g,0—a'—B+n+]1), A(e, A+ +1);

where R (77) >0, R(o—a')+min{-R(a'),-R(L'), R(n—a—-L)} ,A(e,a) represent the  sequence  of

a+l1 a+e-1 . . . . .
parameters ; T - ,and 3., F5, () is the generalized hypergeometric function, defined in [4].

Proof: We first operate the fractional integral operator (1.1) with f(¢) =° (% + ¢®)7” and express Appell Function Fj

and (2% + ¢®)7” interms of their equivalent series by means of the formula

s tp sp 2 u»q( th
(t°+ ")’ =c > o — | -—| (1.15)

q:O q! Cg

On interchange the order of integration and summation, which is permissible due to the absolute convergence, and evaluate the
inner integral by means of the formula given by Saxena, Ram and Kalla [14, p. 100, eq .(1.20)]

[ 7 -0 Fy(a,a, B, Bsn;l—t/x 1-x/t) dt
0

T () 275 F[ s+a,s+p,s+n—a-p }

s+a'+p s+y—a,s+n—-pf

where R(77) > 0, R(s) > max {-R(a'),- R(B), R(ax + S —1n)}, the result (1.14) follows. When ' =0, (1.8) reduces to
the result given in [1, p. 334, Eq. (1.6)].

Lemma 2: If R(n)>0, >0, & =1,2,3, ..., c is apositive number and p is a complex number, then we have

(1”'“,’ B fon [x5 (xg s )7,0 ])(x) _ xc?fafa’H] Cikp r(a+a'—77—5) F(a+ﬂ'—77—5) r'(-pg-9)
- T(a+a'+f -1-6)T[(=5) [(a-f-5)

X3e+1173¢

o, Ak A—a—a' —B +y+1), A(k,A+1), A(k,A—a—B+1) (XJ

Ak Ad—a-a +y+1), Ak, A—a-B +y+1), A(k,A+B+1)| ¢

where R(77) >0, R(n+o—-¢gp)+min{—-R(a'), —R(L), R(n-a-L£)}+1 >0

Proof: To establish lemma 2, we take f(f) = ta( t¥ + ¢®)™ in equation (1.2) and write series expansions for the Appell

function and ( #° + ¢® )77, then interchanging the order of integration and summation, which is permissible due to the absolute
convergence and evaluating the inner integral by means of the formula given by Saxena, Ram and Kalla [14, p. 100, eq. (1.21)]

£ -0 By (@, al, B Bl = x/t, 1—t/x ) dt

= — 8

_ T xms_lr{1+a’—77—s,1+ﬂ'—77—s,1—a—ﬂ—s }

, s PP PSPPI (1.18)
l-s+a'+p'-n, 1-s—a, 1-s-p
where R(17) >0, R(p)<1+min {R(a'—n), R(B'—1n), -R(a+ ) }and using the well known relation
—1)"
() _, :H, the desired result (1.17) is obtained. For @'=0, (1.17) yields the result given in [1, p. 335, Eq. (1.10)].
2. Generalized Fractional Integral Formulas
_ 0 & EN—P QU m £ £\~ m,n h e EN—HU (Sl)
If f(t)y=t"(t"+c")r S, [pt" (t°+c”) "] N Azt @+ T 2.1
Pty (52)

where
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s = (aj,a )l,n""’(Ti(a.fi’a.ii»nﬂ,pi;r and s, = (b ,BJ) ’”(Ti(bﬁ’ﬂji»m+1,qi;r
then, we have following relation:

wu

% i ( 1) ( W)us w,s x(ez) Zgys xS—a—a/H]

s=0  h=l v=0 s! v! B, ®

o 157 )y =

NI+ I(I-a'-p'+1) I (I—a—-a'-p+n+1)
LI+ +H) I (S-a—-a'+np+1) T'(I-a'-p+n+1)

o | PEISTIE AGe, SHD, M8 S+ 4 1-a) Ae,Stn+l-a—a' =) (x)
) (X
L A&, T+ B, A(e,F+n+l—a—a'), A&, I+n+1-a' - f)

where

N Q
=0+ms+hé and R=gp+ens+ers; S':ZAJ.— Z 4; +ZB 2 B; >0
j=1 Jj=N+1 j=1 Jj=M+1
b.
The result (2.2) is valid for m(n)>0,1+m(5—a'+ms+h3—-’)+ min {-R(@"),-R(B).-Rp-a-H)} >0,
7oi<j<m
| arg Z| < 3" 7/2, 3> 0,cisapositive number and 0, m, n, h, r are complex numbers, k =1, 2, 3, ... , u is an arbitrary

positive integer and the coefficients 4 ,

(w, s > 0) are arbitrary constants, real or complex.

, [wu] M oo ( ]) ( W)us s x(ét) Zéys -
a (Igia’ﬂ’ﬂ’”f)(ﬂ =Y XX _ L Sadn
s=0  h=l v=0 stv! By, ¢
><F(oe+05'—77—5)1"(05+ﬁ'—77_§) L(-4-3)
(-3 T(a+a'+p' -n-3) T(a-F-3)

p+ns+ré, Ag, I—a—-d—-F+n+1), A (g I+1), A (&, S—a+S+])

)

X 3413 ~ , ~ ~
Alg, I—a—d +n+1), A(e, I—a-LF+n+1),A (&, I+ [+1)

..................... (2.3)

where c is a positive number and P, m, n, h, r are complex numbers, k=1,2,3, ...; R(y) >0,

a;—1
R(n+S—a—cp)+min{-R ('), —R(L"), R(p—a—-B)+ms+(h—er) max { JA }<O|argz|<5’7z/2,
I<j<N J

3" > 0. uis an arbitrary positive integer and the coefficients 4 ,, ; (w, s 20) are arbitrary constants, real or complex.

The proof of the results (2.2) and (2.3) can be developed on similar lines to that followed for the results (1.12) and (1.15).
3. Interesting Special Cases
(I) Ifweseth=r=0,(2.2)and (2.3) yield

(Igf”ﬂ’ﬂ”"[x5 (xf+ )P Sy [yx™ (xf+ ¢f )_”])(x)

, N
x5—a—a+77 [w/u] (_W)us Aw,s ys xm

ctP 5=0 s! ct"

F'(6+ms+1) T(S+ms—-a'+p +1) T'(6+ms —a—a'—F+n+1)
I'(S+ms+p'+1) T'(6+ms —a—-a'+n+1) T(d+ms —a'—f+n+1)
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p+ns, A(g, S+ms+1),A(g,0+ms+ ' —a'),A(e,0 +ms+n+1—a-a' - B)| (x\° G
X =1 | .
B Ae,54ms+ B +1),A(e,+ms+n+l—a—a'),A(&,5+ms+n+1—-a' - B) | \c
and
(1 BPN|S (3% 1 c#)P| SE [pa™ (x4 ¢£) "] )(x)
S—a—a'+n [w/u] (—W) A s m s
_ X z us w,s y X
Y. 5=0 s! ct"
)JXa+a¥n—§—ms)]Xa+¢T—n—&ﬂm)IX—ﬂ—5—mﬂ
I'a+a'+p' —n-06-ms) I'(—-n—-ms) T(a—pB—56—ms)
p+ns, A(&, S+ms+1), A(g, A+ms—a—d — f +n+1), A(g, S+ms—a+B+1)| (xY 52)
X =11 .
3 A, S+ms—a—d +n+1), A(e,5+ms—a—f +n+1),A(e,0+ms+ f+1) | \c
(II') If we put a' =0in (2.2), where the right hand sides represents the Saigo operators, we get
[w/u] M o (—I)U (-w),, 4 x( )Z§ oL
tg =5 3 5 o s MV TV o
s=0  h=1 v=0 st vl By, c
T(3+1) T (I+y-f+1) prns+ré, A(e, I+1), A(e,S+y+1-5)| x* 53)
T (I-B+1) T (S+a+y+l) 2% A&, 3+1-B), A(e,I+a+y+1) U '
which holds under the same conditions as given with (2.2) for &' = 0. Next if we put &’ = 0 in (2.3) and use the identity
we arrive at
il Mo (1) (=), 4y, x(E) x 7y T(B-3) T(n-3)
(1227 ) =% ¥ 3 v T . .
s=0 h=1v=0 s!lov ! B, c -3 rla+p+n-3)
p+ns+rE, A(e, I+1),A(e,F—a-B-y+1)| xF
X aeiF s -— (3.4)
A(é‘,s—}/-f-l), A(é‘,s—ﬂ‘l'l) Ck

Which holds under the same conditions as given with (2.3) for &' =0, (3.3) and (3.4) are recently given by Suthar et al. [22].
When p=a' =0 ,Lemma 1 and 2 are reducing to the results given by Saigo and Raina [10].

4. Conclusion

We have established two new integral relations involving the product of the Srivastava’s polynomials and the N -function. We can
also derived analogous result in the form of Riemann-Liouville and Erdélyi-Kober fractional integral operators, which have been
depicted in corollaries. In another direction, using remark (1.1) and (1.2), we can also find the numerous result in the form of I-
function and H-function. Therefore, the results presented in this article are easily converted in terms of a similar type (1, 10, 14, 15,
20, 21) of new interesting integrals with different arguments after some suitable parametric replacements.
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