

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 05, pp.50238-50241, May, 2017

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SECONDARY METABOLITE PROFILING OF PIPER VELAYUDHANII E. S.S. Kumar and S.P. Mathew

^{*,1}Shanmugasundaram, T., ²Ebanasar, J, ³Sheeja, B. D. and ⁴Sudheer Mohammed, M. M.

^{1,2}Department of Zoology and Wildlife Biology, Government Arts College, Udhagamandalam-643002, Tamilnadu, India

³Department of Botany, Government Arts College, Udhagamandalam-643002, Tamilnadu, India ⁴Department of Botany, Government Arts College, Coimbatore-641018, Tamilnadu, India

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 27 th February, 2017 Received in revised form 25 th March, 2017 Accepted 14 th April, 2017 Published online 23 rd May, 2017	 Piper velayudhanii E. S. S. Kumar and S.P. Mathew is an endemic species confined mainly to upper Nilgiris, Tamilnadu, India. The plant has not been find a place either in ethnomedicinal literature or phytochemical research. Hence the present work is aimed at secondary metabolite profiling of leaf and fruit to investigate the scope of bio prospecting one of the more than 2000 species of <i>Piper</i>. The study observed that leaf contains alkaloids, tannins, steroids, triterpenoids, saponins and Gum and Mucilages. Notably flavonoids could not make into the list. However, the fuit is demonstrated to contain alkaloids, tannins, triterpenoids, saponins, and gum and mucilages and fixed oil including
Key words:	steroids, flavonoids and glycosides. The FT – IR analysis of the leaf as well as the fruit exposed the array of bioactive functional groups associate with the secondary metabolites in <i>Piper velavudhanii</i>
Piper velayudhanii, Bio prospecting,	making the species worth pursuing pharmacological studies.

Piper velayudhanii, Bio prospecting, Secondary metabolite, FT - IR analysis.

Copyright©2017, Shanmugasundaram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Shanmugasundaram, T., Ebanasar, J, Sheeja, B. D. and Sudheer Mohammed, M. M. 2017. "Secondary metabolite profiling of Piper velayudhanii E. S.S. Kumar and S.P. Mathew", International Journal of Current Research, 9, (05), 50238-50241.

INTRODUCTION

The genus Piper L. belongs to Piperaceae and has over 2000 species (Singh et al., 2011) distributed in both hemispheres. *Piper* species, widely distributed in the tropical and subtropical regions of the world are used medicinally in various manners. Plants belonging to the genus Piper are reputed in the Indian Ayurvedic system of medicine for their medicinal properties and in folklore medicine of Latin America and West Indies (Parmar et al., 1997). Piper velayudhani is an endemic wild species found in the upper Nilgiris of the Nilgiri Biosphere Reserve, 1700 meter above mean sea level. The extensive literature surveys did not account for any previous report on the uses of Piper velayudhani. Hence the present study is designed to demonstrate the secondary metabolite profile to analyze the medicinal potential, if provedto elevate the status of the species there by forest managers can plan to handle the threat to the species.

MATERIALS AND METHODS

Piper velayudhani (Fig.1) is collected from Lamb'sRock, Coonoor, Nilgiris. The plant is identified with Botanical

*Corresponding author: Shanmugasundaram, T.

Department of Zoology and Wildlife Biology, Government Arts College, Udhagamandalam-643002, Tamilnadu, India.

Survey of India, Coimbatore. Freshly collected specimens, both leaves and fruits, are shade dried and powdered with a mortar and pestle. The successive extraction of the leaf and fruit are carried out according to the method suggested by Das et al., 2010. Secondary metabolite screening has been performed for phyto chemicals such as alkaloids (Waldi 1965, Wanger 1993, 1996 and Evans, 1997), flavonoids (Trease and Evans, 2002), tannins (Segelman et al., 1969), steroids and triterpenoids (Finar, 1986), saponins (Kokate, 1999), Glycosides (Camporese et al., 2003) and fixed oils (Kokate, 1999). The FT-IR analysis was performed based on KBr pellet (or Alkali halide disc) method as described by Stuart (2004).

RESULTS AND DISCUSSION

The results of the secondary metabolite analysis of leaf (Table 1) and fruit (Table 2) are given below. Phytochemicals such as alkaloids, tannins, steroids, triterpenoids, saponins and Gum and Mucilages are observed in the leaf of Piper velayudhanii. The ethanol extract yielded much of the metabolites except flavanoids, triterpenoids and fixed oil. However, the water extract contained all the above mentioned compounds such as alkaloids, tannins, steroids and triterpenoids. It is worth mentioning that flavonoids are absent in the leaves.

Figure 1. Piper velayudhanii

When petroleum ether extracted steroids, gums and mucilage and fixed oil the ethyl acetate fraction contained steroids and fixed oil. Unlike leaf P.velayudhanii fruit on successive extraction yielded an array of secondary metabolites. Phytocompounds such as alkaloids, flavonoidstannins, steroids, triterpenoids, saponins, glycosides and gum and mucilages and fixed oil are extracted into various solvents. The most successful extract is found to be ethanol which yielded alkaloids, flavonoids tannins, triterpenoids, and gum and mucilages and fixed oil except steroids, saponins and glycosideswhereas water yielded only triterpenoids, saponins and fixed oil. Ethyl Acetative is observed to be productive in having alkaloids, steroids, triterpenoids, glycosides and fixed oil. Except tannins, flavanoids and saponis allother compounds are found to be present in the fruit of P.velayudhanii. The secondary metabolite screening of both leaf and fruit of *P.velayudhanii* demonstrate a significant result that secondary metabolites vary in composition as well as structure and properties between leaf and fruit. This observation requires further elaboration and characterization. The FT- IR spectrum obtained for leaf and fruit are illustrated in Figure 2 and 3 respectively. The respective functional groups corresponding to the IR absorption of the leaf powder with metabolites are listed in Table 3. The functional groups in turn represent the secondary metabolites identified in the screening. The functional groups corresponding to the respective IR spectra are interpreted by following Bassler and Morrill (2007).

	Chemical Constituents	Tests	Leaf			
S. No.			Organic solvents			
			PE	EA	Eth	Water
1	Alkaloids	a) Dragendorff's test	-	-	+	+
		b) Mayer's test	-	-	+	+
		c) Wagner's test	-	-	+	+
		d) Hager's test	-	-	+	+
2	Tannins	5% FeCl□ test	-	-	+	+
3	Steroids	Liebermann - Burchard's test	+	+	+	+
4	Triterpenoids	a) Liebermann - Burchard's test	-	-	-	+
5	Saponins	Foam test	-	-	+	-
6	Gum & Mucilages	Whistler and BeMiller test	+	-	+	-
7	Fixed oils	Spot test	+	+	-	-

Table 1. Secondary metabolite screening of successive extracts of <i>P.velayudhanii</i> leaves	Table 1. Secondary metabolite sc	creening of successiv	ve extracts of <i>P.velayudha</i>	<i>inii</i> leaves
--	----------------------------------	-----------------------	-----------------------------------	--------------------

P E – Petroleum Ether; **EA** – Ethyl acetate; **Eth** – Ethanol;

"+"Indicates presence of compounds; "-" Indicates absence of compounds

		Tests	Fruit			
No. Cl	Chemical Constituents		Organic solvents			Water
			PE	EA	Eth	_
1	Alkaloids	a) Dragendorff's test	-	+	+	-
		b) Mayer's test	-	-	+	-
		c) Wagner's test	+	+	+	-
		d) Hager's test	-	-	+	-
2	Flavonoids	10% HCl & 5% NaOH test	-	-	+	-
3	Tannins	5% FeCl□ test	-	-	+	-
4	Steroids	Liebermann - Burchard's test	+	+	-	-
5	Triterpenoids	a) Liebermann - Burchard's test	+	+	+	+
6	Saponins	Foam test	-	-	-	+
7	Glycosides	Keller - Kiliani test	+	+	-	-
8	Gum & Mucilages	Whistler and BeMiller test	+	-	+	-
9	Fixed oils	Spot test	+	+	+	+

P E – Petroleum Ether; EA – Ethyl acetate; Eth – Ethanol;

"+"Indicates presence of compounds; "-" Indicates absence of compounds

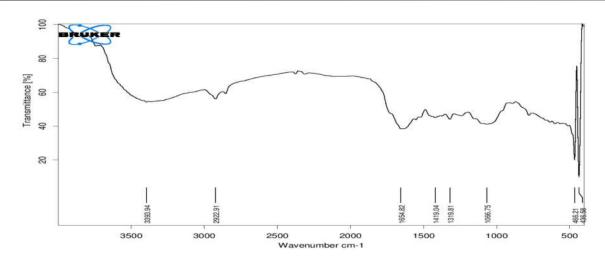


Fig.2. FT- IR Spectrum of leaf powder

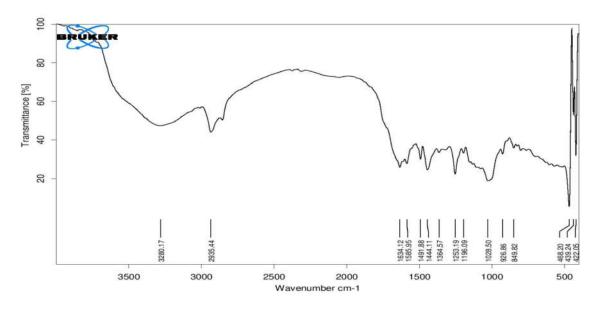


Fig.3. FTIR Spectrum of fruit powder

 Table 3. Functional groups corresponding to the IR Spectrum of leaf powder

Wave Numbercm ⁻¹	Range	Functional Group
3393.94	3100-3500	N - H
2922.91	3000-2840	С–Н
1654.82	1620 - 1680	C=C
1419.04	1400 - 1600	$\mathbf{C} = \mathbf{C}$
1319.81	1200 - 1450	O - H
1066.75	1050-1150	C - O

 Table 4. Functional groups corresponding to the IR Spectrum of fruit powder

WaveNumber cm ⁻¹	Range	Functional Group
3280.17	3100-3500	N - H
2935.44	2840 - 3000	С–Н
1634.12	1620 - 1680	C = C
1585.95	1400 - 1600	$\mathbf{C} = \mathbf{C}$
1491.88	1400 - 1600	$\mathbf{C} = \mathbf{C}$
1444.11	1350-1480	-C - H
1364.57	1350-1480	-C - H
1253.19	1080 - 1360	C - N
1196.09	1180 - 1200	C - O - C
1028.50	1050 - 1150	C - O
926.86	900 - 950	OH
849.82	675 - 1000	= C - H

The figure 3 represents the FT- IR spectrum obtained for fruit and demonstrate a large array of functional groups in correspondence with secondary metabolite screening of the fruit. The various functional groups obtained during FT - IR analysis of the fruit powder indicate that large number of critical functional groups capable of initiating bioactivity are sufficiently present in the Pipervelayudhanii fruit. FTIR spectroscopy of the current research proved that is a reliable and sensitive method for detection of bioactive compounds. The FTIR spectral range is not only used to determine functional groups of a molecule, but it also provides a characteristic fingerprint region that can be used to uniquely identify the compounds. The FTIR spectroscopy allows the analysis of a relevant amount of compositional and structural information in plants and is a time-saving method to characterize and identify the functional groups (Grube et al., 2008). The advantage of the infrared technique is that it can be nondestructive, requires a relatively small amount of sample, is fast and is accurate (Stuar, 2004; Lin et al., 2011). Infrared technique does not require a reagent, so this method is more eco-friendly.

Acknowledgement

We sincerely thankful to Botanical Survey of India, Southern Regional Centre, Coimbatore.

REFERENCES

- Camporese, A., Balick, M.J., Arvigo, R., Esposito, R.G., Morsellino, N., De Simone, F. and Tubaro, A. 2003. Screening of anti-bacterial activity of medicinal plants from Belize (Central America). *Journal of Ethnopharmacology*. Vol. 87; pp. 103–107.
- Das, K., Tiwari, R.K.S. and Shrivastava, D.K. 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. *Journal of Medicinal Plants Research*, Vol. 4(2); pp. 104-111.
- Evans, W. C. 1997. Trease and Evans Pharmacognocy. 14th edition. Harcourt Brace and company, Asia pvt. Ltd., Singapore.
- Finar, I.L. 1986. Stereo chemistry and the chemistry of natural products Vol. 2. Longman, Singapore.
- Grube, M., Muter, O., Strikauska, S., Gavare, M. and Limane, B. 2008. Application of FT-IR spectroscopy for control of the medium composition during the biodegradation of nitro aromatic compounds. *Journal of Indian Microbiology and Biotechnology*, Vol. 35: pp. 1545–1549.
- Kokate, C.K. 1999. Practical pharmacognosy. 4th Edition. Vallabh prakashan Publication, New Delhi, India.
- Lin, H., Zhao, J.W., Sun, L., Chen, Q.S. and Zhou, F. 2011. Freshness measurement of eggs using near infrared (NIR) spectroscopy and multivariate data analysis. *Innovative Food Science & Emerging Technologies*, Vol. 12(2): pp. 182–186.

- Parmar, V.S., Jain, S.C., Bisht, K.S., Jain, R., Taneja, P., Jha, A., Tyagi, O.D., Prasad, A.K., Wengel, J., Olsen, C.E., Boll, P.M. 1997. Phytochemistry of the genus Piper. *Phytochemistry*, 46, 597–673.
- Segelman, A.B., Farnsworth, N.R. and Quimby, M.D. 1969. False negative saponins test results induced by the presence of tannins. *Lloydia.*, Vol. 32: pp. 52-58.
- Singh A, Deep A, Sharma P. 2011. Black Pepper: King of Spices. International Journal of Pharmacy Research & Technology, 1(2):01-07. 3.
- Stuart, B. 2004. Infrared Spectroscopy: Fundamental and Applications. Saunders College Publishing, Philadelphia, USA.
- Trease, G.E. and Evans, W.C. 2002. Pharmacognosy. 15th Edition. W. B. Sanders Company Limited, London. pp. 001-585.
- Wagner H., Blad X. S., Gain Z. and Suie E. M. 1996. Plant drug analysis; Springer Verlag, Berlin, Germany. pp. 360.
- Wagner, H. 1993. Pharmazeutische Biologic 5. (ed), AUFI. 15 BN 3-437-20-X.Gustav fisher V welag, stuttart, Germany.
- Waldi, D. 1965. Spray Reagents for Thin Layer Chromatography. In: Egonstahl (Ed). Thin layer chromatography –A- Laboratory Hand book. Acadameic press Inc., Publishers, New York, U S A.
