
 z

RESEARCH ARTICLE

NEW AVERAGE LEAST FREQUENCY USED WEB CACHE REPLACEMENT USING INTELLIGENT
AGENT VS LFU, LRU, SIZE AND PCCIA CACHE REPLACEMENT TECHNIQUES

FOR SAMPLE GENERATED WITH WEBTRAFF

*,1Mohammed Salah Abdalaziz Khaleel, 2Saif Eldin Fattoh Osman and 2Hiba Ali Nasir Sirour

1Faculty of Computer Studies, International University of Africa, Khartoum, Sudan
2Emirates College of Technology, Faculty of Computer Studies IUA, Khartoum, Sudan

ARTICLE INFO ABSTRACT

Web cache replacement plays important role in increasing the performance and speed of browsing

web sites using internet. This paper highlights a new proposed Average Least Frequency Used

Removal (ALFUR) and compares it with web cache replacement techniques like (LFU, LRU, SIZE,

and PCCIA). Hit Ratio (HR) and ByteHit Ratio (BHR) were used to measure the performance of these

algorithms, and it was found that ALFUR technique has the bestHit Ratio and ByteHit Ratio since it

has the highest values for HR &BHR when cache size was started from 1Mb,6Mb,500Mb,800Mb.

Copyright©2017, Mohammed Salah Abdalaziz Khaleel et al. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Consider a caching network proxy application for the HTTP

protocol. This proxy typically sits between the internet and the

user or a set of users. It ensures that all the users are able to

access the internet and enables sharing of all the shareable

resources for optimum network utilization and improved

responsiveness. Such a caching proxy should try to maximize

the amount of data that it can cache in the limited amount of

storage or memory that it has at its disposal (Prof. Ketan Shah

Anirban Mitra Dhruv Matani, 2010). Typically, lots of static

resources such as images, CSS style sheets and JavaScript code

can very easily be cached for a fairly long time before it is

replaced by newer versions. These static resources or ”assets”

as programmers call them are included in pretty much every

page, so it is most beneficial to cache them since pretty much

every request is going to require them. Furthermore, since a

network proxy is required to serve thousands of requests per

second, the overhead needed to do so should be kept to a

minimum.To overcome this situation, Web caching technique

has been used. Web cache reduces the high traffic over the

internet so that user can access the web content faster.

*Corresponding author: Mohammed Salah Abdalaziz Khaleel,
Faculty of Computer Studies, International University of Africa,

Khartoum, Sudan.

The main purpose of cache is to place the copy of object near

to theclient, so that web user can access the object easily,

without the request going to the web server. That keep the need

object near as demand to decrease the overhead of network to

load the missing object form proxy server or original server and

increase the availability of object. There are different points

where a cache can be set up, such as browser, proxy server and

close to server. When a user requests a web page, firstly it is

checked in cache, if the requested web page is available then it

send back to the user. If the web page is not found in the

cache; then the request is redirected to the web server and

sends the response to the client. Because of the limited size of

memory of cache, it becomes much hard to save all objects in

the memory (Prof. Ketan Shah Anirban Mitra Dhruv Matani,

2010).Traditional replacement policies but not efficient in web

caching are still used by most web browsers (Wessels,2001;

Tanet al., 2006). In fact, a replacement policy can be effected

by few important factors of web objects (Chung-yi Changet al.,

2010; Tanet al., 2006; Koskelaet al., 2003). These factors

include but not limited to recency (i.e., time of the last

reference to the object), frequency (i.e., number of the previous

requests to the object), size, and access latency of the web

object. These factors can be combined into the replacement

decision. Most of the proposed approaches in the literature use

one or more of these factors without paying attention of

combining some of these factors. However, combination of

ISSN: 0975-833X

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 9, Issue, 01, pp.45632-45638, January, 2017

 INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Article History:

Received 16th October, 2016

Received in revised form
20th November, 2016

Accepted 25th December, 2016

Published online 31st January, 2017

 Citation: Mohammed Salah Abdalaziz Khaleel, Saif Eldin Fattoh Osman and Hiba Ali Nasir Sirour, 2017. “New average least frequency used web
cache replacement using intelligent agent VS LFU, LRU, size and Pccia cache replacement techniques for sample generated with Webtraff”, International

Journal of Current Research, 9, (01), 45632-45638.

Key words:

LFU, Proxy cache, Removablepolicies,

Web caching performance.

these factors is still a challenging task as one factor in a

particular.This paper highlights ALFUR and compares it with

LFU, LRU, SIZE and fuzzy logic base policy.

LFU ReplacementStrategy

Since a network proxy is required to work on thousands of

requests per second, the overhead needed to do so should be

kept to a least possible. To minimize this overhead, the

network proxy should force out resources that are not

frequently used. Hence, only the frequently used resources

should be kept at the expense of the not frequently used ones

since the former have verified themselves to be valuable over a

period of time. Static resources of heavily used pages are

always requested by every user of that page. LFU cache

replacement strategy is one of the Web caching techniques

that can be activated by these caching proxies to force out the

least frequently used items in its cache (Cherkasova et al.,

2001). The main characteristics of this technique is that LFU is

keeping track of the number of times a block is referenced in

memory, and when more spaces is needed for new objects but

there is no more rooms in the cache because it is full; in such

case the system will remove the item with the lowest reference

frequency from the cache. The major disadvantage of the LFU

replacement algorithm is that some web sites possess their

place in cache memory for a long time even without using

them again. This leads to wasting a certain size of cache

memory since this element remains in the memory with no

change. Other disadvantages of LFU policies are that they

involve logarithmic implementation complexity in cache size,

and they almost pay no attention to recent history.

Weighting-Replacement-Policy (WRP)

In order to enhance the performance of the LFU algorithm, a

replacement based on Weighting-Replacement-Policy (WRP)

was proposed (Amany Sarhan et al., 2015). This algorithm acts

like LFU by exchanging pages that were not recently used and

pages that are called up only once. Three counters are used in

ranking the pages in cache memory; the counter which shows

the recency of block (L), the counter which shows the number

of times that block buffer has been referenced (F), and the time

difference (ΔT) between the last access time (Tc) and time of

penultimate (Tp). Thus, the weighting value of block i can be

calculated by the following equation: Wi=Li/(Fi∗∆Ti). The

time between each reference to a block would be at least one in

its lowest case. In every access to buffer, if referenced block j

is in the buffer then a hit is occurred and this policy will work

as follows: - Li will be changed to Li+1for every i ≠ j. - For i =

j first we put ΔTi = Li, Fj = Fj+1 and then Lj=0 But if

referenced block j is not in the buffer, a miss occurs and the

algorithm will choose the block in buffer which its weighting

function value is greater than the others. This will be done

from top to down.

In this way, if values of some object are equal to each other,

the object which has upper place in the buffer will be chosen to

be forced out from buffer. It means that WRP policy follows

FIFO law in its nature. Let assume that a miss has been

occurred and block k has the greatest weighting value and then

it should be forced out from buffer. First we change Li to Li +

1 for every i ≠ k and then replace new referenced block with

block k. The final step is to set all weighting factors of block k

to their initial values. The weighting value of the blocks that

are in buffer will be updated in every access to cache.

Frequency based & Recency-based strategies

Most of these strategies are an extension of the commonly

known algorithm Least Frequently Used (LFU). There are two

methods to implement these algorithms, one requires the use of

supporting cache, and the others are not. Spatial Locality is a

property of request streams concerns with the probability that

an object will appear again based on how often it’s been seen

before. This property is used by Frequency based strategies,

contrasting Recency-based strategies, these algorithms require

complex data structures, such as binary heaps to help decrease

the time overhead in making their decisions.

Comparatively, most recency-based strategies only requires to

keep track of the most recent values seen by the proxy cache,

simplifying the record of a web object’s data to the time it is in

the cache even if it is removed and added repetitively.

However, frequency counts do not concern only to the lifespan

of a certain object in the cache, but can also be determined

across several lifetimes of the object. The persistent recording

of data for an object’s frequency counts is known as Perfect

LFU, which definitely needs more space overhead. The

tracking of data while the object is only in the cache is known

as In-Cache LFU. Since there is space overhead with perfect

LFU, the in-cache is concerned as one of these strategies (Sam

Romano and Hala ElAarag, 2008).

LRU cache replacement

Traditional caching policies are suitable for CPU caches and

virtual memory systems. Although most Web proxy servers

still concern with these conventional policies they are not

efficient in Web caching area. Least-Recently Used (LRU)

algorithm is the simplest and most common cache management

approach, which removes the least recently accessed objects

until there is enough space for new objects. LRU is easy to

implement and proficient for identical size objects, like in the

memory cache. However, it does not work well in Web

caching since it does not consider the size or the download

latency of objects, see Table (2) for comparison (Waleed Ali et

al., 2011).

SIZE cache replacement

The SIZE policy is one of the common web caching

approaches. When this algorithm is used and space is needed

for a new object, it replaces object(s) with the largest size from

cache by new one. The main disadvantage of SIZE policy is

that objects with small size are remaining in the cache even

though they are not accessed again, this leads to cache

pollution. Greedy-Dual-Size (GDS) policy was suggested as

extension of the SIZE policy to clean up the cache pollution.

This algorithm integrates several factors and allocates a key

value or priority for each web object stored in the cache. When

cache space becomes unavailable and new object is required to

be stored in cache, the object with the lowest priority is

removed (Waleed Ali and Siti Mariyam Shamsuddin, 2015).

Although, these conventional Web caching approaches suffer

from some limitations they form the basis of other efficient

caching algorithms and most Web proxy servers are still

concern with these mentioned earlier conventional replacement

policies.

45633 Mohammed Salah Abdalaziz Khaleel et al. New average least frequency used web cache replacement using intelligent

 agent VS LFU, LRU, size and Pccia cache replacement techniques for sample generated with Webtraff

Fuzzy logic base replacement policy

PCCIA is Fuzzy logic base algorithms, is implemented on two

sides; parent cache side and child caches side and it was

developed from combining LFU, LRU and Size caching

replacement policies with a Cache Cleaner Agents use fuzzy

logic to make an intelligent decision. In this algorithm LFU

and LRU policies are performed on the child caches side. And

Cache Cleaner Agents are responsible of examining objects'

key values and remove web object with high clean up priority

proactively. To complete the cleanup task in proficient manner

reactive Coordination has been applied between the parent and

child cleaner agents to increase hit ratio and byte hit ratio; their

common goal.

When a web object with medium priority is encountered in

parent and children caches, coordination rules are applied by

the Coordination agent. In similar state the cleaner agent

applies Q-learning algorithm to avoid difficult calculation to

take a suitable action. Q-learning algorithm associates reward

value to each action. Optimal action that leads to the goal, has

an instant high reward while other actions have low reward

values. A graph can be used to represent States and Actions,

node represent "state" while agent's movement from one node

to another represent the "action". Web traff simulator that

generates two samples of workload was used for testing

purposes. These samples represented the users' requests and

used cache sizes. To evaluate the cache performance, Hit Ratio

and Byte Hit Ratio were used. Simulation results show that

when the cache size growth PCCIA performs better than LRU,

LFU and Size replacement polices in terms of hit rate and byte

hit rate (Hiba. A. Nasir et al., 2013).

ALFUR Description

ALFURis a new multi agent Technique that consists of four

big agents: Reader agent, Analyzer agent, Removal agent and

Performance agent. JADE technology was used to implement

these agents, while Java Programming Language was used to

write codes for these agents with their tasks.

These agents are discussed as following:

Reader Agents: The Reader agent reads the object date from

"access log file" which is created by the proxy server.

Analyzer Agents: The main task of the Analyzer Agents is the

calculations of frequency, size and request time for objects as

needed to prepare object’s information then send it to removal

agent.

Removal Agents: Its main task is to remove the object to

create free space in cache for other object, depending on the

Analyzer Agent results.

Performance evaluator Agent: calculate the number of hit

ratio and number of byte hit ratio that are used to measure the

performance of ALFUR.

Model Architecture

The model architecture consists of three modules as shown in

Figure1:

1-The Monitoring Module: This contains the monitoring

agent and Analyzer Agent. It is a reactive agent that monitors

the proxy cache. This agent works by using a fast response

behavior. It provides information that allows the Analyzer

Agent agents to take a decision.

2- The Removal Module: This contains the parent cache

Removal agents ; which task is to clean up the cache according

to web object frequencies, sizes, and times.

Figure 1. Model Architecture

Algorithm Methodology

The new proposed Technique-ALFUR- reads the objects in

cache memory using reader agent then it analyzes the cache

object using analyzer agent that calculates average of

frequencies, object’s frequency, size and time. The average

frequency calculating the summation of total number of

frequency over number of objects, while the average size is

calculating the summation of object size over total object size.

The removal is remove based on the following conditions:

 If object’s frequency greater than the average of

frequencies then don’t remove this object, either that

removes this object.

 If object’s frequency equals to the average of

frequencies then compare the object’s size with the

average, if it’s greater it must be removed, either that it’s

not removed.

 If object’s frequency equals to the average frequencies

and the average equals to the object’s size, then it

calculates the average of the web objects’ time stamp if

it less than web object time stamp not remove, either

that this object must be removed.

 Finally, the performance agent calculates the number of

hit ratio and number of byte hit ration to measure the

performance of this new Technique.

ALFUR Algorithm: New LFU Caching Algorithm

1. Read web object

2. Calculate web object frequency, size ,request time

3. Calculate Average of web object frequency, size and

request time

4. IF object Freq>Average objects Freaq THEN

5. ((Don’t remove object

6. else

7. Remove object)

8. Else IF object Freq=Average objects and object

size>average objects size THEN

9. (Remove object

10. else

11. Don’t remove object)

12. Else IF object Freq=Average object and object

size=average object size and object request

time>average request time THEN

13. (Don’t remove object

14. Else

45634 International Journal of Current Research, Vol. 9, Issue, 01, pp.45632-45638, January, 2017

15. remove object))

16. end

Performance Metrics

To evaluate the performance of the cache, performance metrics

are being used. These performance metrics play a very

important role in the web cache performance calculation. Based

on these performance metrics we can compare the performance

of different algorithms. Cache replacement policy depends on

the several key metrics. The most commonly used are Hit rate,

Byte hit rate.

Hit rate

The percentage of all requested objects which are found in the

cache instead of transferred from the requested server.

Byte hit rate

The percentage of all data that is transfer straight from the

Cache rather than from requested server. Table 1 shows how

they can be calculated.

Table 1. Performance metrics (Amany Sarhan et al., 2015)

Metric Definition

Hit Ratio
𝐻𝑅 =

 𝜕𝑖𝑛
𝑖=1

𝑛

Byte Hit Ratio
𝐵𝐻𝑅 =

 𝑏𝑖𝜕𝑖
𝑛
𝑖=1

 𝑏𝑖
𝑛
𝑖=1

When n: total Number of requests

∂i: 1 if the request i is in the cache
∂i: 0 otherwise

bi: size in bytes

Table 2. Comparison between standard replacements (Waleed Ali

et al., 2011)

Policy Brief description Advantages Disadvantages

LRU

The least recently

used objects are

removed first

Simple and efficient

with uniform size

objects, such as the
memory cache

Ignores download

latency and the

size of Web
objects

LFU The least

frequently used

objects are

removed first

Simplicity Ignores download

latency and size of

objects and may

store obsolete Web

objects
indefinitely

SIZE Big objects are

removed first

Prefers keeping

small Web objects
in the cache, causing

high cache hit ratio

Stores small Web

objects even if
these object are

never accessed

again. Low byte
hit ratio

RESULTS

The following figures give results of ALFUR with

traditional LFU, LRU, Size and PCCIA removable policies

in terms of Hit Ratio and Byte Hit rate

Hit Ration comparison between ALFUR and other

Replacements Removal Algorithms

The following figures show the comparison of ALFUR with

traditional LFU, LRU, SIZE and PCCIA removable algorithms

in terms of Hit ratio. For different cache size shows above the

figures.

Hit ratio Comparison Figure 2 Tested with cache size 1MB

Figure 2. HR when cache size=1MB

Hit ratio Comparison Figure 3 Tested with cache size 6MB

Figure 3. HR when cache size=6MB

Hit ratio Comparison Figure 4 Tested with cache size 500MB

Figure 4. HR when cache size=500MB

Hit ratio Comparison Figure 5 Tested with cache size 800MB

Figure 5. HR when cache size=800MB

83.33 83.33

55.73
65.28

57.61

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

HR cache size 1MB

85.83

40.94
47.9

39.05 43.39

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

HR cache size 6MB

84.13

38.88

13.11 13.11 12.41

0

50

100

ALFUR LFU LRU SIZE PCCIA

HR cache size 500MB

34.75
47.29

10.04 10.04
16.48

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

HR cache size 800MB

45635 Mohammed Salah Abdalaziz Khaleel et al. New average least frequency used web cache replacement using intelligent

 agent VS LFU, LRU, size and Pccia cache replacement techniques for sample generated with Webtraff

Byte Hit Ration comparison between ALFUR and other

Replacements Removal Algorithms

The following figures show the comparison of ALFUR with

traditional LFU,LRU, SIZE and PCCIA removable algorithms

in terms of Byte Hit ratio. For different cache size shows above

the figures.

Hit ratio Comparison Figure 6 Tested with cache size 1GB

Figure 6. HR when cache size=1GB

Byte Hit ratio Comparison Figure 7 Tested with cache size

1MB

Figure 7. BHR when cache size=1MB

Byte Hit ratio Comparison Figure 8 Tested with cache size

6MB

Figure 8. BHR when cache size=6MB

Byte Hit ratio Comparison Figure 9 Tested with cache size

500MB

Figure 9. BHR when cache size=500MB

Byte Hit ratio Comparison Figure 10 Tested with cache size

800MB

Figure 10. BHR when cache size=800MB

Byte Hit ratio Comparison Figure 11 Tested with cache size

1GB

Figure 11. BHR when cache size=1GB

ALFUR Best Result In Hit Ratio and Byte Hit Ratio

The Figure12 shows the best result of ALFUR in term of Hit

Ration and Byte Hit Ration for generated data using webtraff

simulator, when cache size equals 6MB.

74.87

10.83 14.77 14.16 13.76

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

HR cache size 1GB

48.32 48.32
60.53

66.68
59.93

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

BHR cache size 1MB

60.31

42.33
55.29

39.22
49.24

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

BHR cache size 6MB

53.92

35.45

13.75 15.16 13.67

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

BHR cache size 500MB

16.02

47

15.6 17.11 20

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

BHR cache size 800MB

40.3

18.73
12.51 9.29

16.68

0

20

40

60

80

100

ALFUR LFU LRU SIZE PCCIA

BHR cache size 1GB

45636 International Journal of Current Research, Vol. 9, Issue, 01, pp.45632-45638, January, 2017

Figure 12. Best HR and BHR for ALFUR

ALFUR Worst Result In Hit Ratio and Byte Hit Ratio

The Figure13 shows the best result of ALFUR in term of Hit

Ration and Byte Hit Ration for generated data using webtraff

simulator, when cache size equals 800MB

Figure 13. Worst HR and BHR for ALFUR

RESULTS AND DISCUSSION

Result Discussion in terms of Hit Ratio for all Replacement

Algorithms

This section consists of performance result discussion for data

generated using webtraff in the term of Hit Ratio between all

replacement algorithms (ALFUR, LFU, LRU, SIZE, and

PCCIA).

 Figure 2, the arrange of the replacement algorithms

depends on cache size 1Mb, the ALFUR and LFU are

same best result in this sample with hit ratio 83.33%, the

replacement algorithm is in the second range is SIZE

with 65.28% .the replacement algorithm is in the third

range is PCCIA with 57.61%the replacement algorithm

is in the last range is LRU with 55.73%HR.ALFUR is

better than second range in this sample SIZE with rate

+18.05%, this rate of hit ratio for ALFUR is forth range

for all samples.

 Figure 3, the arrange of replacement algorithms depends

on cache size 6Mb, the ALFUR is in the first range with

85.83% HR, LRU is in the second range with 47.9%

HR, PCCIA in the third range with 43.39% HR, LFU is

in the fourth range with 40.94% HR and SIZE

replacement in the last range with 39.05% HR. ALFUR

is better than second range in this sample LRU with rate

+37.93%. This rate of hit ratio for ALFUR is third

range for all samples.

 Figure 4, the arrange of replacement algorithms depends

on cache size 500Mb, the ALFUR is in the first range

with 84.13% HR, LFU is in the second range with

38.88% HR,LRU and SIZE in the third range with

13.11% HR and PCCIA is in the last range with 12.41%

HR . ALFUR is better than second range in this sample

LFU with rate +45.25%. This rate of hit ratio for

ALFUR is second range for all samples.

 Figure 5, the arrange of policies depend on cache size

800Mb , the LFU is in the first range with 47.29% HR,

ALFUR is in the second range with 34.75% HR, PCCIA

is in the third range with 16.48% HR .LRU and SIZE in

the last range with 10.04% HR . ALFUR is worse than

first range in this sample LFU with rate -12.54%. This

rate of hit ratio for ALFUR is fifth range for all samples.

 Figure 6, the arrange of policies depend on cache size

1Gb, the ALFUR is in the first range with 74.87% HR,

LRU is in the second range with 14.77% HR, SIZE is in

the third range with 14.16% HR, PCCIA in the fourth

range with 13.76% HR and LFU in in the last range with

10.83% HR. ALFUR is better than second range in this

sample LRU with rate +60.1%. This rate of hit ratio for

ALFUR is first range for all samples.

Result Discussion in the term of Byte Hit Ratio for all

Replacement algorithms

This section consists replacement algorithms of result

discussion performance for data generated using webtraff in the

term of Byte Hit Ratio between all replacement algorithms

(ALFUR, LFU, LRU, SIZE and PCCIA).

 Figure 7, the arrange of replacement algorithms depends

on cache size 1Mb ,the SIZE is in the first range with

66.68% BHR, LRU is in the second range with 60.53%

BHR, PCCIA is in the third range with 59.93% BHR

.ALFUR and LFU in the last range with 48.32% BHR .

ALFUR is worse than first range in this sample SIZE

with rate -18.36%. This rate of byte hit ratio for

ALFUR is forth range for all samples.

 Figure 8, the arrange of replacement algorithms depends

on cache size 6Mb, the ALFUR is in the first range with

60.31% BHR, LRU is in the second range with 55.29%

BHR, PCCIA is in the third range with 49.24% BHR

.LFU in the fourth range with 42.33% BHR and SIZE in

the last range with 39.22% BHR. ALFUR is better than

second range in this sample LRU with rate +5.02%.

This rate of byte hit ratio for ALFUR in third range for

all samples.

 Figure 9, the arrange of replacement algorithms depends

on cache size 500Mb, the ALFUR is in the first range

with 53.92% BHR, LFU is in the second range with

35.45% BHR, SIZE is in the third range with 15.16%

BHR .LRU in the fourth range with 13.75% BHR and

PCCIA in the last range with 13.67% BHR. ALFUR is

better than second range in this sample LFU with rate

+18.47%. This rate of byte hit ratio for ALFUR is

second range for all samples.

85.83

40.94 47.9 39.05 43.39
60.31

42.33 55.29
39.32 49.24

0.00

50.00

100.00

ALFUR LFU LRU SIZE PCCIA

Best HR and BHR for
ALFUR when Cache

Size=6MB

HR BHR

34.75
47.29

10.04 10.04 16.4816.02

47

15.6 17.11 20

0.00

50.00

100.00

ALFUR LFU LRU SIZE PCCIA

WorstHR and BHR for
ALFUR when Cache

Size=800MB

HR BHR

45637 Mohammed Salah Abdalaziz Khaleel et al. New average least frequency used web cache replacement using intelligent

 agent VS LFU, LRU, size and Pccia cache replacement techniques for sample generated with Webtraff

 Figure 10, the arrange of replacement algorithms

depends on cache size 800Mb, the LFU is in the first

range with 47% BHR, PCCIA is in the second range

with 20% BHR, SIZE is in the third range with 17.11%

BHR .ALFUR in the fourth range with 16.02% BHR

and LRU in the last range with 15.60% BHR. ALFUR is

worse than first range in this sample LFU with rate -

30.98%. This rate of byte hit ratio for ALFUR is fifth

range for all samples.

 Figure11, the arrange of replacement algorithms

depends on cache size 1Gb, the ALFUR is in the first

range with 40.3% BHR, LFU is in the second range with

18.73% BHR, PCCIA is in the third range with 16.68%

BHR .LRU in the fourth range with 12.51% BHR and

SIZE in the last range with 9.29% BHR. ALFUR is

better than second range in this sample LFU with rate

+21.57%. This rate of byte hit ratio for ALFUR is first

range for all samples.

ALFUR Best Result Discussion (HR and BHR)

Generally the hit rate increases when cache size increases, the

best HR rate and BHR rate for ALFUR in all sample when

cache size is equal to 6MB that is shown in 12.The best Hit

Ratio equals 85.83% and the best Byte Hit Ratio equal 60.31%.

ALFUR Worst Result Discussion (HR and BHR)

The worst HR rate and BHR rate for ALFUR in all sample is

when cache size is equal to 800MB that is shown in figure 13.

The reason for the worst ALFUR case in this result is because

the average frequency for this sample is very big when

comparing with other web object frequency have very small

number of frequency. The worst Hit Ratio equals 34.75% and

the worst Byte Hit Ratio equal 16.02%.

Conclusion

Although many web caching policies have been proposed in

the literature, they still have lots of overheads and are difficult

to implement. In this paper, a new replacement policy is

developed in order to overcome some of the problems found in

the literature. The proposed strategy was able to evict the

object with small frequency, size and oldest web object in

cache. This was seen in the simulation results through

calculating the hit ratio and Byte Hit Ratio. The simulation

results showed that proposed. Best HR Result ALFUR for all

Cache Replacements (ALFUR, LFU, LRU, SIZE, PCCIA) in

terms of hit ratio form all generated samples, From above result

the average Hit Ratio for ALFUR is the best performance with

72.58% HR, second is LFU with 44.25% HR, third PCCIA with

28.73% HR, forth SIZE with 28.33% HR and last range is LRU

with 28.31% HR. Best BHR Result ALFUR for all Cache

Replacements (ALFUR, LFU, LRU, SIZE, PCCIA) in terms of

byte hit ratio form all generated samples, From above result the

average Byte Hit Ratio for ALFUR is the best performance

with 43.77% BHR, second is LFU with 38.37% BHR, third

PCCIA with 31.90% BHR, forth range is LRU with 31.54%

BHR and the last range is SIZE with 29.51% BHR. From above

result ALFUR is better than LFU, LRU, SIZE, and PCCIA.

REFERENCES

Amany Sarhan, Ahmed M. Elmogy, Sally Mohamed Ali ,”A

new Web Cache Replacement Approach based on Internal

Requests factor”, IJCSNS International Journal of

Computer Science and Network Security, VOL.15 No.3,

March 2015

Cherkasova, Ludmila, and Gianfranco Ciardo. 2001. "Role of

aging, frequency, and size in web cache replacement

policies." In High-Performance Computing and

Networking, pp. 114-123. Springer Berlin Heidelberg.

Chung-yi Chang,Tony McGregor,Geoffrey Holmes, 2010.

“The LRU* WWW proxy cache document replacement

algorithm”Sep 17.

Hiba. A. Nasir, Yahia. A. Mohammed, Amir. A. Eisa, 2013.

"Agent-based Proxy Cache Cleanup Model using Fuzzy

Logic", proceedings of International Conference of

Computing Electrical and Electronic Engineering

(ICCEEE), Khartoum, Sudan, August.

Koskela, T., J.Heikkonen, and K.Kaski. 2003. ”Web Cache

Optimization with Nonlinear Model Using Object Feature,”

Computer Networks Journal, Elsevier, 20 Dec.

Prof. Ketan Shah Anirban Mitra Dhruv Matani,An O(1)

algorithm for implementing the LFU cache eviction

scheme,August 16, 2010.

Sam Romano and Hala ElAarag, 2008. “A Quantitative Study

of Recency and Frequency based Web Cache Replacement

Strategies”, ISBN 1-56555-318-7.

Tan, Y., Y. Ji, and V.S Mookerjee. 2006. “Analyzing

DocumentDuplication Effects on Policies for Browser and

Proxy Caching”. INFORMS Journal on Computing, 18(4),

506522.

Waleed Ali andSitiMariyamShamsuddin, 2009. “Integration of

Least Recently Used Algorithm and Neuro-FuzzySystem

into Client-side Web Caching,” International Journal of

Computer Science and Security (IJCSS).

Waleed Ali, Siti Mariyam Shamsuddin, 2015. “Intelligent

Dynamic Aging Approaches in Web Proxy Cache

Replacement, Journal of Intelligent Learning Systems and

Applications, 7, 117-127

Waleed Ali, Siti Mariyam Shamsuddin, and Abdul Samad

Ismail, 2011. “A Survey of Web Caching and Prefetching”,

Int. J. Advance. Soft Comput. Appl., Vol. 3, No. 1, March

2011 ISSN 2074-8523; Copyright © ICSRS Publication.

Wessels, Duane. Web caching. O'Reilly Media, Inc., 2001.

Wong. A.K.Y. 2006. “Web Cache Replacement Policies: A

Pragmatic Approach,” IEEE Network,Magazine.

45638 International Journal of Current Research, Vol. 9, Issue, 01, pp.45632-45638, January, 2017

