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INTRODUCTION 
 

In 1968, Q. G. Mohammad (1965) considered the problem of finding a bound for the number of zeros of a polynomial inside the 
unit disk. Under certain conditions on the coefficients of the polynomial, he proved the following result:
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K. K. Dewan in 1980 (2) generalized Theorem A to polynomials with complex coefficients and proved the following result:
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considered the problem of finding a bound for the number of zeros of a polynomial inside the 
unit disk. Under certain conditions on the coefficients of the polynomial, he proved the following result:
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C. M. Upadhye in 2007 (3) generalized Theorem B by proving the following result: 
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Gulzar in 2012  (4) generalized Theorem C as follows: 
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In 2013, Gulzar  (5) proved a more general result as follows: 
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In  this  paper , we  prove  the  following  result which not only contains all the above results as special cases, but also gives many 
other interesting results for different values of the parameters: 
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Taking n   in Theorem 1, we get the following result: 
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Lemma 1 is the famous Jensen’s Theorem(see page 208 of (1)). 
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For Rz  , we have, by using the hypothesis, 
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 and the proof of Theorem 1 is complete. 
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