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INTRODUCTION

Mashhour, M.E Abd El.Monsef and S.N.El-Deeb (Mashhour ez al., 1982) introduced a new class of pre-open sets in 1982. R.Selvi
and M.Priyadarshini introduced a new class of pre-L-open sets in 2016(October). In this paper pre-L-compact, pre-R-compact, pre-
L-locally compact, pre-R-locally compact, sequentially pre-L-compact, sequentially pre-R-compact, countably pre-L-compact,
countably pre-R-compact are defined and their properties are investigated.

PRELIMINARIES
Throughout this paper /' (f(4)) is denoted by A  and f(f~'(B)) is denoted by B"_
Definition 2.1

Let A be a subset of a topological space X, 7T). Then A is called
pre-open if A C int(cl(A)) and pre-closed if cl(int(A)) C A; (Mashhour ef al., 1982).

Definition 2.2.

Let f: (X,7)—>(Y, O ) be a function. Then f is pre-continuous if f '(B) is open in X for every pre-open set B in Y. (Mashhour
etal., 1982)
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Definition: 2.3.

Let f: (X,7) —> (Y, O ) be a function. Then f is pre-open (resp. pre-closed) if f(A) is pre-open(resp. pre-closed) in Y for every pre-
open(resp. pre-closed) set A in X. (Mashhour et al., 1982)

Definition: 2.4.

Let f: (X, 7) =Y be a function. Then fis

1) p-L-Continuous if A" is open in X for every pre-open set A in X.

2) p-M-Continuous if A is closed in X for every pre-closed set A in X. (Selvi and Priyadarshini, 2016)
Definition: 2.5.

Let f: X —> (Y, O ) be a function. Then fis

1) p-R-Continuous if B "is open in Y for every pre-open set B in Y.

2) p-S-Continuous if B "is closed in Y for every pre-closed set B in Y. (Selvi and Priyadarshini, 2016)
Definition: 2.6.

Let f: (X, 7) — (Y, O ) be a function, then f is said to be

1) P-irresolute if f B (V) is pre-open in X, whenever V is pre-open in Y.
2) P-resolute if f (V') is pre-open in Y, whenever V is pre-open in X. (Mashhour et al., 1982)

Definition: 2.7.

Let (X,7) is said to be

1) finitely p-additive if finite union of pre-closed set is pre-closed.

2) Countably p-additive if countable union of pre-closed set is pre-closed.

3) p-additive if arbitrary union of pre-closed set is pre-closed. (Mashhour et al., 1982)

Definition: 2.8.
Let (X, 7)be a topological space and x € X .Every pre-open set containing x is said to be a p-neighbourhood of x. (Popa et al.,)

Definition: 2.9.

Let A be a subset of X. A point x € X is said to be pre-limit point of A if every pre-neighbourhood of x contains a point of A other
than x. (Malghan ef al.,)

Definition: 2.10.

Let A be a subset of a topological space (X, T ), pre-closure of A is defined to be the intersection of all pre-closed sets containing
A. It is denoted by pcl(A). (Erdal .Ekici and Migual calder, 2010)

Definition: 2.11.

Let A be a subset of X. A point x € X is said to be pre-limit point of A if every pre-neighbourhood of x contains a point of A other
than x. (Malghan et al.,)

Definition: 2.12.

A collection T of subsets of X is said to have finite intersection property if for every sub collection {C1, C2........... Cn} of T the
intersection CIMC2 M .......... M Cn is non empty. (James and Munkers, 2010)
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Definition: 2.13.

A collection {U ;y } o € A of pre-open sets in X is said to be pre-open cover of X if X=\ ,_» U, . (Leelavathy, 2016)
Definition: 2.14.

A topological space (X, T ) is said to be pre-compact if every pre-open covering of X contains finite sub collection that also cover
X. A subset A of X is said to be pre-compact if every covering of A by pre-open sets in X contains a finite subcover. (Leelavathy,
2016)

Definition: 2.15.

A subset A of a topological space (X, 7 ) is said to be countably pre-compact, if every countable pre-open covering of A has a
finite subcover. (Leelavathy, 2016)

Example: 2.16.

Let (X, 7)) be a countably infinite indiscrete topological space. In this space {{x}/ x€ X } is a countable pre-open cover which
has no finite subcover. Therefore it is not countably pre-compact. (Leelavathy, 2016)

Definition: 2.17.

A subset A of a topological space (X, 7 ) is said to be sequentially pre-compact if every sequence in A contains a subsequence
which pre-converges to some point in A. (Leelavathy, 2016)

Definition: 2.18.

A topological space (X, T ) is said to be pre-locally compact if every point of X is contained in a pre-neighbourhood whose pre-
closure is pre-compact. (Leelavathy, 2016)

Definition: 2.19

Let f: (X, 7) =Y be a function and A be a subset of a topological space (X, T ). Then A is called
1) P-L-openif A" cint(cl(4"))

2) P-M-closed if A" D cl(int(A4")) . (Selvi and Priyadarshini, 2016)

Definition: 2.20.

Let f: X—>(Y, O ) be a function and B be a subset of a topological space (Y, O ). Then B is called
1) P-R-openif B" cint(cl(B" ))

2) P-S-closed if B" o cl(int(B")). (Selvi and Priyadarshini, 2016)

Example: 2.21.

Let X ={a,b,c,d} and Y=1{1,2,3,4}.LetT = {D, X, {a}, {b}, {a, b}, {a,b,c}}. Letf: (X,7)—>Y defined by f(a)=1,
f(b)=2, f(c)=3, f(d)=4. Then fis p-L-open and p-M-Closed. (Selvi and Priyadarshini, 2016)

Example: 2.22.

LetX=1{a, b, c,d}and Y = {1,2,3,4}. Let 0 ={ DY, {1},{2},{1,2},{1,2,3} }. Let g: X—>(Y,O ) defined by g(a)=1,
g(b)=2, g(c)=3, g(d)=4. Then g is p-R-open and p-S-Closed. (Selvi and Priyadarshini, 2016)

Definition: 2.23.

Let f: (X,7) —(Y, O ) be a function, then fis said to be
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1) P-L-irresolute if f~'(f'(A)) is pre-L-open in X, whenever A is pre-L-open in X.

2) P-M-irresolute if £~ (f(A)) is pre-M-closed in X, whenever A is pre-M-closed in X.

3) P-R-resolute if f(f “'(B)) is pre-R-open in Y, whenever B is pre-R-open in Y.

4) P-S-resolute it f'(f~'(B)) is pre-S-closed in Y, whenever B is pre-S-closed in Y.(Selvi and Priyadarshini, 2016)
Definition: 2.24.

Let (X,7) is said to be

1) finitely p-M-additive if finite union of p-M-closed set is p-M-closed.

2) Countably p-M-additive if countable union of pre-M-closed set is pre-M-closed.

3) p-M-additive if arbitrary union of pre-M-closed set is pre-M-closed. (Selvi and Priyadarshini, 2016)

Definition: 2.25.

Let (X, 7)be a topological space and x € X .Every pre-L-open set containing x is said to be a p-L-neighbourhood of x.(Selvi and
Priyadarshini, 2016)

Definition: 2.26

Let A be a subset of X. A point x € X is said to be pre-L-limit point of A if every pre-L-neighbourhood of x contains a point of A
other than x.(Selvi and Priyadarshini, 2016)

3. Pre- /0 -compact space

Definition: 3.1

(i) A collection {U 5 } oo € A of pre-L-open sets in X is said to be pre-L-open cover of X if X=\U _\ U, .

(i) A collection {U ; } oy € A of pre-R-open sets in X is said to be pre-R-open cover of X if X=U ,_,\ Uy .

Definition: 3.2.

(i) A topological space (X, 7)is said to be pre-L-compact if every pre-L-open covering of X contains finite sub collection that

also cover X. A subset A of X is said to be pre-L-compact if every covering of A by pre-L-open sets in X contains a finite
subcover.
(ii)A topological space (X, 7)is said to be pre-R-compact if every pre-R-open covering of X contains finite sub collection that

also cover X. A subset A of X is said to be pre-R-compact if every covering of A by pre-R-open sets in X contains a finite
subcover.

Theorem: 3.3.

A topological space (X,7)is

1) pre-L-compact = compact 2) Any finite topological space is pre-L-compact.
Proof:

1) Let {Aa }0[EQ be an open cover for X. Then each Aa is pre-L- open.

Since X is pre-L-compact, this open cover has a finite subcover. Therefore (X, 7) is compact.
2) Obvious since every pre-L-open cover is finite.

Example: 3.4.

Let (X, 7)be an infinite indiscrete topological space. In this space all subsets are pre-L-open. Obviously it is compact. But {x}x

€ X is a pre-L-open cover which has no finite subcover. So it is not pre-L-compact. Hence compactness need not imply pre-L-
compactness.
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Theorem: 3.5 A pre-M-closed subset of pre-L- compact space is pre —L-compact.
Proof:

Let A be a pre-M-closed subset of a pre-L-compact space (X,7)and {U } oy € A be a pre —L-open cover for A , then {{U » }
aecA » {X-A}} is a pre-L-open cover for X . Since X is pre-L-compact, there exists «,,d,....ct, € Asuch that
X=Ua ulUa,.....0Ua, V(X — A) Therefore AcUa, WUa,......0Ua, which proves A is pre-L-compact.

Remark: 3.6.
The converse of the above theorem need not be true as seen in the following example (3.7).
Example: 3.7.

Let X ={a,b,c, } and Y ={I,2,3,}. Let f: (X,7) =Y defined by f(a)=1, f(b)=2, f(c)=3. Let X={a,b,c} T={¢,{a},X}-open
set, closed set-{ @, X, {b, c}}.

Here PLO(X) = { ¢, X, {a} {a,b},{a,c}} is pre-L-compact ,A={a,c} is Pre-L-compact but not pre-M-closed
Theorem: 3.8.

A topological space (X,7)is pre-L-compact if and only if for every collection T Of pre-M-closed sets in X having finite

intersection property, ﬂcer C of all elements of 7 is non empty.

Proof:

Let (X, 7)be pre-L-compact and 7 be a collection of pre-M-closed sets with finite intersection property. Suppose ﬂcer C=¢
thenlJ,_.(X —C) = X . Therefore {X —C},_. is a pre-L-open cover for X. Then there exists Cy, C2,.....Cn € 7 such that
U’z'1=1 (X-C)=x

Therefore ﬂzl:lcl. =¢ which is a contradiction. Therefore () __C # ¢

CceT
Conversly assume the hypothesis given in the statement .To prove X is pre-L-compact.

Let {U 4 } ¢ € A be a pre-L-open cover for X .

then U, U, =X =N, ,(X-U,)=¢ By hypothesis ¢, &, ....cx, , there exists such that( |}, (X—U, )=¢. Therefore

aeA ™~ a

U",U, =X . Therefore X is pre-L-compact.
Corollary: 3.9.

Let (X, 7)be a pre-L-compact space and let C;, D C, D...... >C,oC,,,....be anested sequence of non empty pre-M-closed

sets in X. then ﬂne? C, isnon empty.
Proof:
Obviously {C, }n6 - finite intersection property. By theorem (3.8) ﬂne " C, isnon empty.

Theorem: 3.10.

Let (X,7),(Y,O0 ) be two topological space and f: (X, 7) —>(Y, O ) be a bijection then
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1) fis pre- continous and X is pre —L-compact =>Y is compact.

2) fis pre —L-irresolute and X is pre- L-compact =Y is pre-L- compact .
3) fis continous and X is pre-L-compact =Y is compact.

4) fis strongly irresolute and X is compact =Y is pre- L-compact.

5) fis pre —L-open and Y is pre- L-compact = X is compact .

6) fis open and Y is pre-L- compact = X is compact .

7) fis pre- R-resolute and Y is pre-R-compact = X is pre- R-compact .
Proof:

DLet {U ¢y } ¢ € A be aopen cover for Y.
Therefore ¥ =UU , . Therefore X = fy=uf’! Ww,)

Then {f'(U a )} o € A 1s apre-L- open cover for X.

Since X is pre-L- compact,
there exists ¢,,,....q, such that X = U f (U, ). Therefore ¥ = f(X)=U(U,, ).

Therefore Y is compact.
Proof of (2) to (4) are similar to the above.

5)Let {U 4 } ¢ € A be a open cover for X. then {f(U , )} is a pre-L-open cover for Y.

Since Y is pre-L-compact ,there exists @,,,....c, suchthat Y = U f(U,)

Therefore X = /' (Y)=u,_,(U,). Therefore X is compact.

Proof of (6) and (7) are similar.
Remark: 3.11 From (3) and (6) it follows that™ Pre-L- compactness “ is a pre-L- topological property.
Theorem: 3.12 (Generalisation of Extreme Value theorem)

Let f: X —>Y be pre-L-continuous where Y is an ordered set in the ordered topology. If X is pre-L-compact then there exists ¢ and
d in X such that f(c) < f(x) < f(d) for every x € X.

Proof:

We know that pre-L-continuous image of a pre-L-compact space is compact By theorem(3.10). Therefore A=f(X) is compact.
Suppose A has no largest element then {(—00,a)/a € A} form an open cover for A and it has a finite subcover.

Therefore A € (—0,a,) U(=©,a,)U.....U(-0,a, ). Let a = max, q,.

Then A < (—o0, a) which is a contradiction to the fact that a € 4

Therefore A has a largest element M. Similarly it can be proved that it has the smallest element m.
Therefore 3¢ and d in X 3 f(c) =m, f(d) = M and f(c) <f(x) <f(d) V xeX.

4. Countably pre- O -compact space

Definition: 4.1.

(i) A subset A of a topological space (X, 7) is said to be countably pre-L-compact, if every countable pre-L-open covering of A
has a finite subcover.
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(if) A subset A of a topological space (X, 7) is said to be countably pre-R-compact, if every countable pre-R-open covering of A
has a finite subcover.

Example: 4.2.

Let (X, 7) be a countably infinite indiscrete topological space.

In this space {{x}/ x& X} is a countable pre-L-open cover which has no finite subcover. Therefore it is not countably pre-L-
compact.

Remark: 4.3.

1) Every pre-L-compact space is countably pre-L-compact. It is obvious from the definition.
2) Every countably pre-L compact space is countably compact.

It follows since open sets are pre-Lopen.

Theorem: 4.4.

In a countably pre-L-compact topological space, every infinite subset has a pre-L-limit point.

Proof:

Let (X,7) be countably pre-L-compact space. Suppose that there exists an infinite subset A which has no pre-L-limit point. Let

B={a,/ne N} be a countable subset of A.

Since B has no pre-L-limit point of B, there exists a pre-L-neighbourhood U, of @, such that B(\U, ={a,}. Now {U,} isa

pre-L-open cover for B .Since B is pre-L-open , {B°,{U,} .} isa countable pre-L-open cover for X. But it has no finite sub

cover, which is a contradicition, since X is countably pre-L-compact .Therefore every infinite subset of X has a pre-L-limit point.
Corollary: 4.5.

In a pre-L-compact topological space every infinite subset has a pre-L-limit point.

Proof:

It follows from the theorem (4.4), since every pre-L-compact space is countably pre-L-compact.

Theorem: 4.6

A pre-M-closed subset of countably pre-L-compact space is countably pre-L-compact.

Proof:

Let X is a pre-L-compact space and B be a pre-M-closed subsets of X.

Let {4./i=1,2,3,...0} be a countable pre-L-open cover for B. Then {{4,},X—B}
where i=12,3,..0is a pre-L-open cover for X. Since X is countably  pre-L-compact,
there exists i, , 1, ,45.....4, 3(X —B)U,_ 4, =X .

Therefore B = U'Zzl Aik and this implies B is countably pre-L-compact.

Definition: 4.7.

In a topological space (X,7) a point x € X is said to be a pre-L-isolated point of A if there exists a pre-L-open set containing x
which contains no point of A other than x.
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Theorem: 4.8.

A topological space (X,7) is countably pre-L-compact if and only if for every countable collection 7 of pre-L-closed sets in X

having finite intersection property , ﬂceC C of all elements of 7 is non empty.

Proof:
It is similar to the proof of theorem(3.8).

Corollary: 4.9.

X is countably pre-L-compact if and only if every nested sequence of pre-M-closed non empty sets C1 D> C2 D ..... .has a non
empty intersection.

Proof:

Obviously {C, }nE - has finite intersection property. By theorem (4.8) ﬂne +C

, 1snon empty.

5. Sequentially pre- 10 L-compact space
Definition: 5.1.

(i) A subset A of a topological space (X, 7) is said to be sequentially pre-L-compact if every sequence in A contains a
subsequence which pre-L-converges to some point in A.

(i) A subset A of a topological space (X, 7) is said to be sequentially pre-R-compact if every sequence in A contains a
subsequence which pre-R-converges to some point in A.

Theorem: 5.2.
Any finite topological space is sequentially pre-L-compact.

Proof:

Let (X, 7) be a finite topological space and {x, } be a sequence in X. In this sequence except finitely many terms all other terms

are equal. Hence we get a constant subsequence which pre-L-converges to the same point .
Theorem: 5.3.
Any infinite indiscrete topological space is not sequentially pre-L-compact.

Proof:

Let (X,7) be infinite indiscrete topological space and {x, } be a sequence in X.

Let x € X be arbitrary.Then U={x} is pre-L- open and it contains no point of the sequence except x.

Therefore {xn} has no subsequence which pre-L-converges to x. Since X is arbitrary, X is not sequentially pre-L-compact.

Theorem: 5.4.
A finite subset A of a topological space (X ,7) is sequentially pre-L-compact.

Proof:

Let {xn} be an arbitrary sequence in X. Since A is finite, at least one element of the sequence say x0 must be repeated infinite

number of times. So the constant subsequence X, X, ..... must pre-L-converges to X, .
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Remark: 5.5.

Sequentially pre-L-compactness implies sequentially compactness, since all open sets are pre-L-open .But the inverse implication
is not true as seen from (5.6).

Example: 5.6.

Let (X, 7)be an infinite indiscrete space is sequentially compact but not sequentially pre-L-compact.

Theorem: 5.7.
Every sequentially pre-L-compact space is countably pre-compact.
Proof:

Let (X,7)be sequentially pre-L-compact. Suppose X is not countably pre-L-compact. Then there exists countable pre-open cover
U, which has no finite sub cover. Then y _j u,. Choose X eU,X,elU,-U,X, eU3—Ui:12 U,...X, €U, —U’i’:lUi.
This is possible since {Un} has no finite sub cover. Now {x } is a sequence in X. Let x € X be arbitrary .then x € Uk for some K
By our choice of {x,}, xi &Uk for all i>k. Hence there is no subsequence of {x,} which can pre-L-converge to x. Since x is
arbitrary the sequence {xn} has no pre-L-convergent subsequence which is a contradiction. Therefore X is countably pre-L-
compact.

Theorem: 5.8.

Let f: (X, 7) — (Y, O ) be a bijection, then

1) fis pre-R-resolute and Y is sequentially pre-R-compact = X is sequentially pre-R-compact.

2) fis pre-L-irresolute and X is sequentially pre-compact = Y is sequentially pre-L-compact.

3) fis continuous and X is sequentially pre-L-compact =Y is sequentially pre-L-compact.

4) fis strongly pre-L-continous and X is sequentially pre-L-compact =Y is sequentially
pre-L-compact.

Proof:

1) Let {x,} be a sequence in X .Then {f(x,, )} is a sequence in Y. It has a pre —R-convergent subsequence {f(x,, )} such

that {f(x,, )} —=—> ¥, in Y. Then there exists X, € X such that f(x,) =Y, . Let U be pre-R -open set containing x0 then
f(U) is a pre-R-open set containing y0 .Then there exists N such that f € f(U) for allk 2N.

Therefore f~'o f(x, )€ f ' o f(U). Therefore x, €U forallk>N.

This proves that X is sequentially pre-R-compact. Proof for (2) to (4) is similar to the above.
Remark: 5.9.

From theorem (5.8), (1) and (2) it follows that “Sequentially compactness” is a pre- p -topological property.

6. pre- P -locally compact space
Definition: 6.1.

A topological space (X, 7)is said to be pre-L-locally compact if every point of X is contained in a pre-L-neighbourhood whose
pre-L-closure is pre-L-compact.

Theorem: 6.2.

Any pre-L-compact space is pre-L-locally compact.
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Proof:

Let (X, 7)be pre-L-compact, Let x € X then X is pre-L-neighbourhood of x and pcl(X)=X which is pre-L-compact.

Remark: 6.3.
The converse need not be true as seen in the following example (6.4)
Example: 6.4.

Let (X, 7)be an infinite indiscrete topological space. it is not pre-L-compact. But for every x € X, {x} is a pre-L-neighbourhood

and {X} = {x} is pre-L-compact.
Therefore it is pre-L-locally compact.
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