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INTRODUCTION 
 

Let nM  be a C  differentiable manifold and 
 

3 0, 0.k k kF F F  
                                                                                                                 

 

we define the operators l and m on Mn by 
 

2 2, ,K Kl F m I F   
                                                                                                                 

 
where I is the identity operator. 
From (1.1) and (1.2) we have 
 

2 2, , , 0l m I l l m m lm ml     
(1.3)     

 

, 0K K K K KF l lF F F m mF   
 

Theorem (1.1) Let the (1,1) tensors p and q be defined by
 

, ,K Kp m F q m F then   
                                                                                              

 
2 2 21 , 0pq p q p p q I     
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differentiable manifold and F be a C
(1,1) tensor defined on 

nM , and satisfying

                                                                                                                 

                                                                                                                 

, , , 0l m I l l m m lm ml     
                                                                                

, 0     

be defined by 

p m F q m F then
                                                                                              

1 , 0pq p q p p q I     
                                                                                         

Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.), India. 

 Available online at http://www.journalcra.com 

International Journal of Current Research 
Vol. 8, Issue, 09, pp.38792-38795, September, 2016 

 

 INTERNATIONAL 
    

On the structure equation F3K+FK=0”, International Journal of Current Research, 8, (09), 

 z 

Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.), India 

 
 
 

In this paper, we have studied various properties of the structure equation F3K + FK=0, where K is a 
structure have also been discussed. 

ribution License, which permits unrestricted use, 

 

, and satisfying 

                                                                                                                                                         (1.1)     
 

                                                                                                                                                         (1.2)     
 

                                                                                                                        

                                                                                                                                      (1.4)      

                                                                                                                                 (1.5)      
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3 3 4 4p q q p p I q   
 

2 2 2 2, ,Kpl ql F p l q l l pm qm p m q m m         
 

 
Proof: Using (1.2), (1.3) and (1.4), we have 
 

2Kpq m F m l I    
                                                                                                                                                    (1.6)     

 

2 3 4, ,Kp m l p m F q p pq I etc        

 

Theorem (1.2) Define the (1, 1) tensors   and   by 

 

, ,K Kl F l F      then 
                                                                                                                                               (1.7)     

 

2 2 3 30, 2 0 2                                                                                                                                                 (1.8)     
 

 
Proof: Using (1.2), (1.3), (1.3) and (1.7), we have 
 

2 2 2 22 , 2 , 0,K KF F       
                                                                                                                               (1.9)     

 

 3 22 2 2 2 2 2 .K K K K KF l F F F F l etc          

 

Theorem (1.3): If    ,rank F n
 

 

 , 0, Kl I m F   is an almost complex structure   
                                                                                                            (1.10)     

 

 
Proof: From the result 
 

 nRank of F Nulity of F Dim M 
                                                                                                                                   (1.11)  

  
0Nulity of F   

0Ker F contains only  

 

0FX   has the only solution 0X 
                                                                                                                                          (1.12)      

 

Let  1 2 1 2 0FX FX F X X   
                                                                                                                                 (1.13)      

 
Using (1.12) in (1.13), we get

1 2X X . Thus F is 1-1, also an operator on a finite dimensional differntiable manifold is onto also. 

Thus 
 
F is invertible 
 

KF  is invertible 

 
1KF


  exists 

 
Applying this result (1.3) gives , 0l I m   and (1.1) gives 

 
2 0KF I                                                                                                                                                                                   (1.14)     

 

 

Thus  KF  is an almost complex structure 
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2. NIJENHUIS TENSOR 
 

Let , ,
F l m
N N N  denote the Nijenhuis tensor corresponding to the operators F, l and m respectively. Then 

 

         2, , , , ,
F
N X Y FX FY F X Y F FX Y F X FY   

 
                                                                                                 (2.1)     

 

         2, , , , ,
L
N X Y lX lY l X Y l X Y l X lY    .  

                                                                                                   (2.2)     
 

         2, , , , ,
m
N X Y mX mY m X Y m mX Y m X mY   

  
                                                                                    (2.3)     

 

 
Theorem (2.1) For the structure F satisfying (1.1), we have 
 

   , ,
KF

N mX mY l mY mX
 
                                                                                                                                                   (2.4)     

 

 , 0
KF

m N mX mY 
                                                                                                                                                                     (2.5)     

 

   , ,
l

N mX mY l mX mY                                                                                                                                                     (2.6)     
 

   , ,
m
N lX lY m lX lY                                                                                                                                                             (2.7) 

 

   , 0 ,
l m

N lX mY N mX lY                                                                                                                                                  (2.8)   
 

 
Proof: Using (1.2) and (1.3) in (2.1), (2.2), (2.3) we get all these results. 
 

3. METRIC F-STRUCTURE 
 
Let the Riemannian metric g satisfies 
 

   , ,F̀ X Y g FX Y is skew symmetric
                                                                                                                               (3.1)     

 

then 

   , ,g FX Y g X FY  and
                                                                                                                                                  (3.2)     

 

 ,F g is called a metric F-structure. 

 
Theorem (3.1) With the structure F satisfying (1.1), we have 
 

       
1

, 1 , ,`
KK Kg F X F Y g X Y m X Y


                                                                                                               (3.3)     
 

 
Where 
 

     , , ,m̀ X Y g mX Y g X mY                                                                                                                                     (3.4)      
 
Proof: Using (1.1), (1.2) and (3.2), (3.4) we get (3.3) 
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