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INTRODUCTION

We consider the system

AX b


(1.1)

Where , , n nA X b R 


are known non-singular co-efficient matrix, unknown vector and known vector of the linear system

(1.1) respectively. Without loss of generality, if we let A I L U   where I is the identity matrix and –L and –U are the strictly
lower triangular and upper triangular parts of A respectively. Then the well known AOR method iterative matrix is

1
, (I ) [(1 ) I ( ) ]rT rL r L U         (1.2)

where 0 1r    with 0 

and the Gauss-Seidel iterative matrix is

1
. ( - )G ST I L U (1.3)
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By considering

, 1,2,......., 1,
(s )

0 for others
in

ij n n
a i n j n

S 
   

  


the preconditioned linear system as given by He Honghao et al. [2009]  is

( ) ( )I S AX I S b  


(1.4)

where,

1 1 1( ) ( U U )I S A I D L L      
(1.5)

Here 1 1 1, and UD L are the diagonal, strictly lower and strictly upper triangular parts of S SL respectively.  And it can be

easily seen that SU is always a null matrix.

If . 1 ( 1, 2,........., 1),in nia a i n   then 1
1 1( )I D L L    exists and hence the Preconditioned Gauss-Seidel Iterative

Method (PGSM) iterative matrix exists.

And, the PGSM iterative matrix is

(1.6)

Where

. 1 1G SM I D L L    (1.7)

. 1G SN U U 
(1.8)

we below mention some of the preliminaries, lemmas and theorems as given in He Honghao et al.[2009].

A matrix (a ) n n
ijA R   is called nonnegative if 0, , 1,2,.........., .ija i j n 

A matrix (a ) n n
ijA R   is called Z-matrix if 0,ija i j  , and it is called an M-matrix if A is a Z-matrix and

, 0, ( ),A sI B B s B    where (B) denotes the spectral radius of B.

A splitting B M N  is called regular if
1 0and 0,M N   weak regular if

1 10and 0.M M N  

A matrix (a ) n n
ijA R   is called an M-matrix if A is a Z-matrix and 1 0.A 

A matrix A is irreducible if the direct graph associated to A is strongly connected.

Lemma 1.1:  Let 0A  be an irreducible matrix.  Then

 A has a positive real eigen value equal to its spectral radius;

 To ( )A there corresponds an eigen vector 0X 


;

 ( )A is a simple eigen value of A.

Lemma 1.2: Let 0, 0,A a  then ( )a A if aX AX
 

and 0;X 


moreover, ( )a A if aX AX
 

and 0.X 


Lemma 1.3: Let A M N  be regular of A, then
1( ) 1M N   if and only if A is a non-singular M-matrix.
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Lemma 1.4: Let (a ) n n
ijA R   be a non-singular and irreducible M-matrix, then ,( ) 1,rT   0 1,( 0),r     

where ,rT  be the iterative matrix of AOR method given by (1.2).

Lemma 1.5: Let (a ) n n
ijA R   be a non-singular and irreducible M-matrix with 0 1, 1, 2,......., 1.in nia a i n    then

, , 0 1( 0)rT r      is nonnegative and irreducible matrix, where ,rT  is defined by (1.2).

Lemma 1.6: Let (a ) n n
ijA R   be an M-matrix with 0 1,in nia a  1,2,......., 1,i n  nX R


is n-dimensional

vector, then
1
. 0.G SM SX





Theorem 1.1: Let (a ) n n
ijA R   is non-singular and irreducible M-matrix with 0 1, 1, 2,......., 1,in nia a i n    then

. . .

. .

. . .

(1) ( ) ( ) if ( ) 1.

(2) ( ) 1 if ( ) 1.

(3) ( ) ( ) if ( ) 1.

G S G S G S

G S G S

G S G S G S

T T T

T T

T T T

  

 

  

 

 

 

Theorem 1.2: Let (a ) n n
ijA R   is non-singular and irreducible M-matrix with 0 1,in nia a 

1,2,......., 1, ni n X R  


then . ,( ) ( ) 1,G S rT T    0 1( 0)r     

where .G ST and ,rT  are defined by (1.6) and (1.2) respectively.

In the section 2, we introduce Parametric Preconditioned Gauss-seidel Iterative Method (PPGSM) and compare the spectral radius
of the iterative matrices of PPGSM and PGSM.  Whereas in the concluding section, we present a numerical example.

Parametric Preconditioned Gauss – Seidel Iterative Method (PPGSM)

We consider the preconditioned linear system

AX b


i.e.; ( ) ( )I S AX I S b   
 (2.1)

where 0  being a relaxation parameter

Here,

1 1 1( ) ( )I S A I D L L U U          (2.2)

where 1 1,D L and 1U are the diagonal, strictly lower and strictly upper triangular parts of S SL respectively.

The inverse of 1 1( )I D L L    exists if 1in nia a  ( 1,2,....., ),i n 0  and hence PPGSM iteration matrix .G ST

which is defined by

1
. . ..G S G S G ST M N  




(2.3)

Where
1

. 1 1( )G SM I D L L  

   

(2.4)
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and

. 1( )G SN U U  
(2.5)

We now, prove the following theorem by using the lemmas stated in section 1.

Theorem 2.1: Let (a ) n n
ijA R   is irreducible M-matrix and non-singular with

0 1, 1, 2,......., 1, n
in nia a i n x R     .

Then

 . . .( ) ( ) if ( ) 1G S G S G ST T T   

 . . .( ) ( ) if ( ) 1G S G S G ST T T    .

Proof: There exists a positive vector X


such that

1( )I L UX X 
  (2.6)

since A being an irreducible M-matrix.  Here ' ' being the spectral radius of the Gauss-Seidel iterative matrix i.e; .( )G ST .

From (2.6), we have

( )I L X UX  
  (2.7)

(2.8)

Let 1
1 1 1 1[( ) ( )] ( )y I D L L L D X      


and 1 1( )y L D X  


. By the assumption 0 1,in nia a 

1,2,......., 1,i n  we have 1 1( ) 0,in ni iL D X a a X  
 

for 1,2,....., 1 .i n  From which one can deduce that the first

n-1 entries of y are positive.

Since
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1 1 1
1 1 1 1 1[( ) ( )] [ ( ) ( )]( )I D L L I I D L L I D             

1 1
1 1[ ( ) ( )] ( )I I D L L I L       

2( ......) ,I L L I L     

( )y I L y y Ly      is obtained. Because of 1 1 10, ( ) 0n n nn nna a L    is obtained.  Hence the nth entry of Ly is
positive.  So, we can deduce that y is positive.

If 0 1  and 0  then from (2.8) we have

. ( 1) 0G ST X y      
 (2.9)

by Lemma (1.2) and hence

. .( ) ( )G S G ST T 

If .1, then ( 1) 0G ST X y       
 (2.10)

Therefore, . .( ) ( )G S G ST T 

If .1and 0, then ( 1) 0G ST X y         
 (2.11)

Therefore, . .( ) ( )G S G ST T  provided

1

1






(2.12)
Finally, as long as ' ' be fixed as in (2.12) we have for any ' ' in the ranges 0 1  and 1  ,

Hence the proof of the theorem is complete.

Numerical Examples

We considered the example given in He Honghao et.al. [2009] and tabulated the spectral radii of iterative matrices of AOR,
PGSM and PPGSM in this paper.  One can denote the following matrix ‘A’ as non-singular and irreducible M-matrix.

1 0.0709 0.0250 0.0240

0.0718 1 0.0472 0.0597

0.0735 0.0856 1 0.0783

0.1261 0.0107 0.0746 1

A

   
    
   
 
   

Table 1

( , )r ,( )rT
(0.6, 0.4) 0.4879
(0.8, 0.2) 0.3306
(0.9, 0.3) 0.2396
(1.0, 1.0) 0.0530

Table 2.

Iterative Matrix Spectral Radius

.G ST 0.0601

.G ST 0.0250

.G ST
with 1.06394 

0.0173
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It can be seen from the above tabulated results that PPGSM with preconditioner ( ) where ' 'P I S   is as given in (2.12),

better than all the methods considered in this paper.
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