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INTRODUCTION
We consider the system
AX =Db (1.1

Where A, )~(, be R™ are known non-s ngular co-efficient matrix, unknown vector and known vector of the linear system
(1.1) respectively. Without loss of generdlity, if welet A=1 — L —U where | isthe identity matrix and —L and -U are the strictly

lower triangular and upper triangular parts of A respectively. Then the well known AOR method iterative matrix is
Trw = (=1L (@-w) I+ W-r)L+wU] 1.2)
where 0<r <w <1withw =0

and the Gauss-Seidél iterative matrix is

Tes=(-L)"U (1.3)
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By considering

—&,, 1=12...,n-1 j=n
S=(s; =
) {0 for others
the preconditioned linear system as given by He Honghao et al. [2009] is
(1+S)AX =(I+S)b (1.4)
where,

(1 +S)A=(1+D,—L—L,—U-Uy)
(L5)

Here D, Ly and U, are the diagonal, strictly lower and strictly upper triangular parts of S— SL respectively. And it can be
easily seen that SU is always a null matrix.

If gnay =21 (1=12,......... ,n—1),then (I +D; —L—L;) texists and hence the Preconditioned Gauss-Seidel Iterative
Method (PGSM) iterative matrix exists.

And, the PGSM iterative matrix is

— _] —=1 —
TGs=Mgs.Nos[Nesl=(I+D,-L-L) ' U+U))

(1.6)
Where
Mas=1+D-L-1, (L7)
Ne_s =U +U,

(1.8)

we below mention some of the preliminaries, lemmas and theorems as given in He Honghao et al.[2009].

A matrix A= (g;) € R™"is called nonnegative if 8; 20,1, ]=12,.... N

A matrix A=(a;)€ R™"is called Z-matrix if 8 <0,i=], and it is called an M-matrix if A is a Z-matrix and
A=d —B, B>0, s>r (B),where r (B) denotes the spectral radius of B.

A splitting B = M — N iscalled regular if M~ > 0and N > 0, weak regular if M 1> 0andM ~*N > 0.

A matrix A= (g;) € R™"is called an M-matrix if AisaZz-matrix and AL > 0.
A matrix Aisirreducibleif the direct graph associated to A is strongly connected.

Lemmal.1l: Let A> Obeanirreducible matrix. Then

e Ahasapositiverea eigen value equal to its spectra radius;
e To I (A) therecorresponds an eigen vector X >0;

o I (A) isasmpleeigenvaueof A.

Lemma1.2: Let A>0, a>0, then a<r (A)if aX < AX and X > 0; moreover, a<r (A)if aX < AX and X >0.

Lemma1.3: Let A=M — N beregular of A, then r (M _1N) < lif and only if Aisanon-singular M-matrix.



37907 International Journal of Current Research, Vol. 08, | ssue, 09, pp.37905-37910, September, 2016

Lemma 1.4: Let A=(g;) e R™"be a non-singular and irreducible M-matrix, thenr (T, w) <L 0<r<w<l(w=0),
where T, w betheiterative matrix of AOR method given by (1.2).

Lemmalsb: Let A= (a”-) e R™" pe anon-singular and irreducible M-matrix with 0 < andy <1 i=12,.... ,n—1.then

Trws 0<r <w<1(w = 0) isnonnegative and irreducible matrix, where T, ,,, is defined by (1.2).

Lemma 16: Let A=(a;) e R™ be an M-matrix with 0<a,a,; <1, i=12.....,n-1 X eR"is n-dimensional

—1
vector, then M g.sSX > 0.

Theorem 1.1: Let A= (a”-) € R™"is non-singular and irreducible M-matrix with 0 < aindni <1 i=12,..... ,N—1 then

M rTes)<r(lgs) ifr(Tgs)<l
(2 r(Tes)=1 if r(Tgg)=1
@ r(Tes)>r(Tgs) ifr(Tgs)>1

Theorem 12 Let A:(a”-)eRnxnis non-singular  and  irreducible  M-matrix  with  O<&,a, <1,

i=12,.....,n-LX eR"thenr (Tes)<r (T, ,) <L 0<r <w<1w=0)

where 'I_'G_s and T, w aredefined by (1.6) and (1.2) respectively.

In the section 2, we introduce Parametric Preconditioned Gauss-seidel Iterative Method (PPGSM) and compare the spectral radius
of the iterative matrices of PPGSM and PGSM. Whereasin the concluding section, we present a numerical example.

Parametric Preconditioned Gauss— Seidel Iterative M ethod (PPGSM)

We consider the preconditioned linear system
AX =b

ie; (l+aS)AX=(1+aS)hb

(2.1)
where a # 0 being arelaxation parameter
Here,
(l+aS)A=(I+ab;-L-al;-U -aU,) (22

where Dy, LyandU are the diagonal, strictly lower and strictly upper triangular parts of S— SL respectively.

Theinverseof (I +aD;—L—-aly) existsif a8, #1 (i=12,.....,n),a = 0and hence PPGSM iteration matrix TaG.S
which is defined by

p— __1 —_
Tac.s=Macs.NaGs
(2.3)

Where Mags=(l+aD;~L-aL,)
(2.4)
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and

Nags = U +au,)

(2.5
We now, prove the following theorem by using the lemmas stated in section 1.

Theorem 2.1: Let A=(a;) € R™"is irreducible M-matrix and non-singular with
O<apay <L i=12,.....,n-1 xeR".

Then
o '(Tags)<r(Tas)if r(Tgg) <1

o 1 (Tass)<r(Tgs)if r (Tgs)>1.

Proof: There exists a positive vector X such that

(I-D'Ux =1 X
(2.6)

since A being an irreducible M-matrix. Here 'l * being the spectral radius of the Gauss-Seidel iterative matrix i.e; I (Tgg) -
From (2.6), we have

| (1 -L)X =UX
2.7)

T s —AX =Mats U+ o)) X —AX
= :Tf;}.s (U+ad)X —:Tf;}.s MesiX
= Mot s[(U+ol) X~ I +oD) ~L~oL )X
Mot SIUI—L)+ ol —A+ Aoy + AL+ AL |X
=Moo ~ L)~ ~D) +0lU; ~ oDy + Aa )X
=Maos[o(Ti ~/AD +AL)JX
— oMot s[U —AD +AL X
=aM.s[U D +L~(A- DD +(A-DL X
— oMot S[SU+SL—S—(A—DD +{(A-DLJX
—aMatss[AS( L) ~S(T—L)—(A-DD +(A-DL X
— oM ots S[(A-DSU~L)—(A-DD +(A-DL X
=o{ A-D)MagsI -DIX (2.8)

Lee y=[(l+aD;)-(L+a Ll)]_l(Ll—Dl))S andy'=(L;—-D;)X. By the assumption O0<ap,a, <1
1=12,.....,n=1 wehave (L —D;) X =&,a, X; >0, for i =1,2,.....,n—1. From which one can deduce that the first

n-1entriesof Y are positive.

Since
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[(1 +aD)—(L+aLl)] ™t =[1 -1 +aD) L+aLy)](l +aD)*
>[I —(l+aD) L+al)]>(1-L)™
=(l+L+L2+....)>1+L,

y>(l+L)y' =y +Ly is obtained. Because of &, 35,8,n1 >0, (L)1 > O is obtained. Hence the ™ entry of LY'is
positive. So, we can deduce that y is positive.

If 0<| <1 and a > 0thenfrom (2.8) we have

Tacs—| X=a(l -1)y<0

(2.9)
by Lemma (1.2) and hence
r (Tacs) <r (Tgs)
If1 =1 then Tags—| X =a(l —-1)y=0
(2.10)
Therefore, I (Tac.s) =T (Tgg)
If | >landa <0, then Tacs—| X =a(l -1)y<0
(2.12)
Therefore, I (Tac.s) <r (Tgg) provided
1
1-1
(2.12)
Findly, aslong as 'a ' befixed asin (2.12) we havefor any 'l 'intheranges O<| <land| >1,

p(TaGs)<pl-s)lGs])
Hence the proof of the theorem is complete.

Numerical Examples

We considered the example given in He Honghao et.al. [2009] and tabulated the spectral radii of iterative matrices of AOR,
PGSM and PPGSM in this paper. One can denote the following matrix ‘A’ as non-singular and irreducible M-matrix.

1 —0.0709 -0.0250 -0.0240
| -0.0718 1 -0.0472 -0.0597
" | -0.0735 -0.0856 1 -0.0783
-0.1261 -0.0107 -0.0746 1
Tablel
(w,r) r(Tw,)
(0.6, 0.4) 0.4879
(0.8,0.2) 0.3306
(0.9,0.3) 0.2396
(1.0, 1.0) 0.0530
Table 2.
Iterative Matrix Spectral Radius
Tes 0.0601
'_I'Gs 0.0250
Tacs 0.0173

with 3 =1.06394
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It can be seen from the above tabulated results that PPGSM with preconditioner P = (1 +a S) where 'a 'isasgivenin (2.12),
better than all the methods considered in this paper.

REFERENCES

Axelession, O. 1994. Iterative Solution Method [M]. Cambridge University Press, Cambridge.

Berban, R.J. 1994. Plemmons. Nonnegative Matrices in the Mathematical Sciences[J]. SIAM, Philadelphia, PA.

Elsner, L. 1989. Comparisons of Weak Regular Splitting and Multisplitting Methods [J]. Numer. Math., 56; 283-289, 19809.

Evans, D.J.,, Martins, M.M., Trigo, M.E. 2001. The AOR method for preconditioned liner [J], Journal of Computational and
Applied Mathematics, 132: 461-466.

He Honghao, Yuan Dongjin, Hou Yi, Xu Jingiu, 2009. Preconditioned Gauss-Seidel Iterative Method for Linear Systems.
International Forum on Information Technology and Applications, 382-385, 2009.

Jiagan Hu., Iterative method for solving linear [M]. Science Press, Beijing, 1991.

Li — Ying Sun, 2005. Comparison theorem for the SOR iterative method [J]. Journal of Computational and Applied Mathematics,
181:336-341).

Varga, R.S. 1981. Matrix iterative Analysis [M], Prentice Hall, Eaglewood Cliff NJ, 1981.

Wen Li, W.W. Sun, 2000. Modified Gauss — Seidel methods and Jacobi type methods for Z — matrix [J]. Linear Algebra Appl.,
317: 223-240.

kkkkkk*%k



