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paper is to estimate the model parameters using maximum li
chain Monte Carlo (MCMC) methods. The model is fitted using data for five districts in Dodoma and 
Singida regions in Tanzania. The sample 10,000 numbers of simulations were used in MCMC in 
parameters distribution to stu
good convergence and we recommend to be used for numerical simulations in similar cases rather 
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INTRODUCTION 
 
Newcastle disease (ND) is an economically important disease 
of poultry for which vaccination is applied as a major 
preventive measure in many countries (Jibril 
endemic in Africa, Asia, Central America, and some part of 
South America while sporadic in Europe (Ashraf and Shah, 
2014). Tanzania is one of the severely affected by
poor surveillance and control measures. ND can cause 

90 100% mortality in susceptible chickens. The disease 
affects mostly chickens and other domestic species such as 
turkeys, ducks, geese, parrots, pigeons and wild cormorants. 
The severe impact of ND is mostly notable in domestic poultry 
particularly to unvaccinated areas, for example in Tanzania the 
national sample census of agriculture 2012 shows that  
chicken households have never applied any vaccination against 
ND (Chuwa, 2012). Moreover, chickens play a vital role by 
providing an important source of high-quality nutrition and 
income at very little costs (Knueppel et al., 2009)
National Sample of Agriculture 2012, Tanzania had about 
43.8�	chickens kept in urban and rural areas and most of the 
poultry industries are dominated by private sectors. Figure 1 
shows the number of house hold reported ND outbreak.
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ABSTRACT 

A deterministic compartmental eco-epidemiological model of Newcastle disease (ND) in Tanzania is 
proposed and analyzed by using the stability theory of differential equations. The main objective of 
paper is to estimate the model parameters using maximum likelihood estimation (MLE) and Markov 
chain Monte Carlo (MCMC) methods. The model is fitted using data for five districts in Dodoma and 
Singida regions in Tanzania. The sample 10,000 numbers of simulations were used in MCMC in 
parameters distribution to study the behavior of each parameter in the model. Many parameters show 
good convergence and we recommend to be used for numerical simulations in similar cases rather 
than using literature values. 
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Newcastle disease (ND) is an economically important disease 
of poultry for which vaccination is applied as a major 

(Jibril et al., 2014). It is 
endemic in Africa, Asia, Central America, and some part of 

(Ashraf and Shah, 
. Tanzania is one of the severely affected by ND with 

poor surveillance and control measures. ND can cause 

mortality in susceptible chickens. The disease 
affects mostly chickens and other domestic species such as 
turkeys, ducks, geese, parrots, pigeons and wild cormorants. 
The severe impact of ND is mostly notable in domestic poultry 
particularly to unvaccinated areas, for example in Tanzania the 
national sample census of agriculture 2012 shows that  52% of 
chicken households have never applied any vaccination against 

hickens play a vital role by 
quality nutrition and 

., 2009). Based on 
National Sample of Agriculture 2012, Tanzania had about 

chickens kept in urban and rural areas and most of the 
poultry industries are dominated by private sectors. Figure 1 
shows the number of house hold reported ND outbreak. 
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Controlling properly ND in Tanzania may help to improve the 
life standard of the families that rely on poultry (most of 
people in rural areas depend on 
otherwise may represent a bigger drain on the economy than 
any other animal viral disease
chickens from ND in Tanzania is still a problematic 
particularly in rural and remote areas where vaccines are 
challengeable in terms of application and safety savings. 
However, more efforts are required in order to out
subsidized vaccination programmes against ND. 
models are now used to link the biological process of disease 
transmission and the epidemics of infectious diseases among 
humans and other animals resulting from the transmission of a 
pathogen either through hosts o
Fraser, 2008). These models are important tool for 
understanding mechanisms responsible for persistence or 
extinction of species in natural systems
making regarding intervention programs 
Modelling infectious diseases in species provides an important
insight into disease behavior and control measures. Therefore, 
the role of this paper is to estimate and fit eco
model parameters using the methods of Maximum Likelihood 
Estimator (MLE) and Markov Chain Monte Carlo (MCMC) to 
determine suitable value for each parameter that will reduce 
ND in Tanzania. The goodness of fit of the model is 
determined by how well it fits the observed data 
2003). 
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epidemiological model of Newcastle disease (ND) in Tanzania is 
proposed and analyzed by using the stability theory of differential equations. The main objective of 

kelihood estimation (MLE) and Markov 
chain Monte Carlo (MCMC) methods. The model is fitted using data for five districts in Dodoma and 
Singida regions in Tanzania. The sample 10,000 numbers of simulations were used in MCMC in 

dy the behavior of each parameter in the model. Many parameters show 
good convergence and we recommend to be used for numerical simulations in similar cases rather 

ribution License, which permits unrestricted use, 

 

Controlling properly ND in Tanzania may help to improve the 
life standard of the families that rely on poultry (most of 
people in rural areas depend on poultry keeping activities) 

may represent a bigger drain on the economy than 
any other animal viral disease (Leonardo, 2015). Protecting 
chickens from ND in Tanzania is still a problematic 
particularly in rural and remote areas where vaccines are 
challengeable in terms of application and safety savings. 
However, more efforts are required in order to out-scale 

tion programmes against ND. Mathematical 
models are now used to link the biological process of disease 
transmission and the epidemics of infectious diseases among 
humans and other animals resulting from the transmission of a 
pathogen either through hosts or environment (Grassly and 

. These models are important tool for 
mechanisms responsible for persistence or 

f species in natural systems and for decision 
making regarding intervention programs (Okosun, et al., 
Modelling infectious diseases in species provides an important 
insight into disease behavior and control measures. Therefore, 
the role of this paper is to estimate and fit eco-epidemiological 
model parameters using the methods of Maximum Likelihood 
Estimator (MLE) and Markov Chain Monte Carlo (MCMC) to 

able value for each parameter that will reduce 
ND in Tanzania. The goodness of fit of the model is 
determined by how well it fits the observed data (Myung, 
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Model formulation and Analysis 
 
In this paper we formulate and analyze a mathematical model 
of ND in Tanzania. The modeled populations include chickens 
as prey and human being as predator. The epidemiological 
model comprises of five subclasses namely susceptible prey

1( )tS , infected prey 1( )tI , susceptible predator 2( )tS , 

infected predator 2( )tI  and predator recovery class 2( )tR . 

The model presented under the following assumptions:  
 

(i) The growth rate of prey population follows a logistic 
function with intrinsic growth rate r  and carrying 

capacity k .  
(ii) The prey population gets infection when it comes into 

contact with other infected prey and this contact process 
is assumed to follow the simple mass action kinetics 

with 1 as the force of infection while human get 

infection by the rate 2 .  

(iii)Natural death rate of prey 1 and induced death rate due 

to disease m reduces the prey population.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(iv) The predator population suffers loss due to the natural 

death rate 2  and increases due to recovery rate   and 

through treatment rate .  

(v) The predation functional response of the predator 
towards susceptible as well as infected prey is assumed 
to follow Michaelis-Menten kinetics and is modeled 
using a Holling type -II functional response with 

predation coefficients 1,b 1c 2 ,b 2c  and half saturation 

constant 1a , 2a , 1n and 2n .  

(vi) Consumed susceptible and infected prey are converted 

into predator with efficiency 1 , 2 , 3 and 4 . 

These assumptions lead into the following schematic 
flow  

 
Mathematical Equations 
 
Considering the assumptions, we formulate the model 
equations as follows 
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Figure 1. Tanzania map showing number of households reported Newcastle Disease                       
 Source: National sample census of Agriculture (Chuwa, 2012) 
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System (1) has to be analyzed with the following initial 
conditions: 

1 1 2 2 20, 0, 0, 0, 0.        S I S I R    
 

 
Model Analysis 
 

Lemma 1: All solutions of the system (1) which start in 5R  

are uniformly bounded.  
 
Proof:  Let 

1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )W t S t I t S t I t R t             (2) 

 
Differentiating and solving (2) we get 
 

   1 1 2 2 20 ( ) ( 1) 1 (0), (0), (0), (0), (0)
u vt vtW t e W S I S I R er
v

      .   (3) 

Consequently, as ,t  we observe 0 ( ) ( 1)
u

W t
v

r         

where 1max{ (0), }u S k , 1 2min{1, , }mv   . 

 
Implying that all solutions of the system (1) are uniformly 

bounded in the interior of 5R  then,  

 

5
1 1 2 2 2( , , , , ) : ( 1)

u
S I S I R R W r

v


 
      

 

for any 0   is 

bounded. 
 

MATERIALS AND METHODS 
 
The maximum likelihood estimator (MLE) and Markov Chain 
Monte Carlo (MCMC) methods for parameter estimation and 
model fitting are considered. We fit the model with the data for 
2014 distributed monthly (see Table 1).  
 
The maximum likelihood estimator (MLE) 
 
The idea of maximum likelihood method is to maximize the 
likelihood function and in this paper, we minimize the sum of 
squares of residual (SSR) defined as  
 

   
2

1

,
N

i

est
i iL y y



                                                 (4)           

                             

where   1
N

iy i  is the real data and   1 

Nest
iy

i
 is the 

solution of model equations (1) at a given parameter value.  
 

Markov Chain Monte Carlo 
 
Markov chain Monte Carlo (MCMC) methods as presented by 
Gilks et al (Gilks  et al., 1996) are numerical methods for 
computing complex multidimensional integrals. The idea is to 

draw N samples 
(1) (2) ( ),  ,  ... ,  N    from the posterior 

distribution and approximate the expectation as the sample 
average 
 

   ( )
1

1

1
| ,  ... ,

N
i

M
i

E g y y g
N

 


     .                        (5) 

 
One difficulty in drawing samples from the posterior 
distribution is that even for the evaluation of the posterior 
probability density; we would need to be able to evaluate the 
normalization constant integral. MCMC methods are a class of 
Monte Carlo methods, which can draw the samples without the 
knowledge of the normalization constant. These methods are 
based on simulating a multidimensional Markov chain, which 
has been constructed such that it has the posterior distribution 
as its stationary distribution. In the simulation of the Markov 
chain we only need to evaluate the ratios of posterior 
probability densities and thus the evaluation of the 
normalization constant is not required. The most well-known 
MCMC methods are the Metropolis, Metropolis-Hastings and 
Gibbs sampler algorithms (Gilks et al., 1996). The Metropolis–
Hastings MH algorithm works by sampling a candidate point 

*  from a proposal distribution  * |q   and then accepting 

the point with acceptance probability (Gilks et al., 1996). The 
following is the Metropolis–Hastings (MH) algorithm 
 

(i) Draw the starting point, (0) , from an initial 

distribution 0 ( )p   

(ii) For 0,1, 2...n   

 

• Sample a candidate point *  from the asymmetric 
proposal distribution  * ( )| nq  

. 

• Accept the candidate point and set ( 1) *n   with the 
probability 

 
 
 

    
( ) *

( ) * ( )

* ( )

|
, min 1, exp *

|

n

n n

n

q
A

q

 
     

 

  
  

                                             
(6) 

• Generate  (1, 0)u U�  from uniform distribution 

• Accept * if  ( ) *| | ,nu A   . 

 
In general, the proposal distributions used in MCMC 
algorithms should result in well mixing of chains and in a 
suitable acceptance rate. Determining which proposal 
distribution is the best one for a particular target distribution is 
a very important, but also a difficult task, because it involves 
much trial–and–error. The most used proposal distribution is 
the Gaussian distribution; however, we do not know how to 
obtain a suitable covariance matrix. One way to overcome this 
problem is to use adaptive MCMC where the proposal 
distribution is automatically adapted during the MCMC run 
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(Haario  et al., 2006; Haario, 2001; Liang et al., 2010)). We 
present below the adaptive MCMC developed by Haario et al 
(Haario et al., 2001): 
 

(i)  Initialization; start with initial values 0  and 
0

 then 

select ,   and an initial non–adapting period 
0n . For 

0 0n   means the adaptation start as the algorithm 

start. If the target density is Gaussian then 22.4

d
 

. 

(ii)  At each step, propose a new *  from a Gaussian 

distribution  1 0,n  � . 

(iii) Accept/reject *  according to the MCMC accepting 

probability. 

(iv)  For 0n n  adapt the proposal covariance matrix 

using: 

  0 1 1cov , , ...,n n d      I , 

  where dI  is the �	 × � identity matrix,  is a small 

positive value whose role is to     make sure that n  

is not singular, and  is a covariance scaling factor 
which optimizes the mixing property of the Metropolis 
algorithm. 

(v)  Iterate from (ii) above until you get enough samples. 
 
Numerical analysis 
 
To explore the behavior of ND model parameters, we use 
numerous numerical simulations and analysis to justify it is 
biological implications.  
 
Data analysis 

 
In this subsection, we present the data for ND death cases per 
district as shown in Table 1, and we fit the model and 
predicting the possible outbreak in Tanzania. The goodness of 
fit is the criterion to determine the parameter values for the 
particular model system from which the data were obtained 
(Jost and Arditi, 2000). From the data we observe that many 
death cases occur in month of September to December (see 
Table 1).  
 
Table 1. Chicken death cases due to ND data per district for 2014 

 

Month Kongwa Chamwino Mkalama Singida Ikungi Total 

Jan 214 195 189 233 129 960 
Feb 123 157 158 237 124 799 
March 164 178 168 141 136 787 
April 176 219 218 147 195 955 
May 138 136 180 139 182 775 
June 248 186 299 162 245 1140 
July 204 125 86 97 197 709 
Aug 234 145 186 102 182 849 
Sept 308 271 278 257 243 1357 
Oct 354 201 345 762 362 2024 
Nov 362 234 456 750 395 2197 
Dec 398 365 481 654 308 2206 
 Total 2923 2412 3044 3681 2698 14758 

 

The goodness of fit is determined through many variations of 
data been captured by the model and minimize the sum of the 
square error so as to measure the validity of the formulated 
model. The accuracy of the model is judged based on 
explanatory capacity, that is coefficient of determination and 
sum of residue square (Massawe. Laurencia. Ndalemo, 
Massawe. Estomih, 2015). 
 
Parameter Estimation 

 
In this subsection we present numerical simulations of model 
(1) using Matlab 2013b software using the data in Table 1. The 
model fitting and parameter estimation of the proposed model 
are carried out using maximum likelihood estimation (MLE) 
and delayed rejection adaptive Markov chain Monte Carlo 
(DRAM) method. Randomly samples were generated using 
normal distribution and the data were fitted using least squares 
estimate (see Table 2) for the literature values of convectional 

rate of prey to predator 1  (Hugo, Massawe, and Makinde, 

2012), force of infection among prey population 1  (Sharma 

and Samanta, 2015), carrying capacity k (Mukhopadhyay and 
Bhattacharyya, 2009), prey growth rate (Bornaa, Makinde, and 

Seini, 2015), predation rate of susceptible prey 1b
(Mukhopadhyay and Bhattacharyya, 2009), and other were 
estimated.   
 

 
 
Figure 3. Comparison of the solution of model (1) with literature 

values and data 
 
(Figure 3) shows the plot of the solution of the model using 
literature values and data against time, which show bad 
behavior as the solution deviates from data. Now solving this 
problem, we need to estimate the model parameter and fit the 
data as shown in (Figure 4).  
 
The (Figure 4) show at least a good fit behavior as the solution 
of the model tends close to the trend of the data. However, the 
model seems to have fit the data well, but we are not sure to 
what extent these model parameters are correct (Tchuenche, 
Khamis, Agusto, and Mpeshe, 2011). Therefore, we employ 
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Markov Chain Monte Carlo (MCMC) methods with 1,000 
initial runs using the model parameter values and the results 
are used as prior distribution to re-run the model with 10,000 

simulations in connection with convergence criteria of -810 . 
The estimated parameter values are presented in Table 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MCMC results 

 
The MCMC plot shows the convergence of the chain and we 
use this results for parameter estimation (see Table 2) as well 
as for predictive of the outbreak of ND in Tanzania.  
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Table 2. MCMC statistics for 10,000 numbers of simulations 
 

Symbol �� ���� ����� ������� ���� Convergence Kurtosis Skewness 

1  
0.25 0.2495 0.2236 0.2389 0.0601 0.8112 5.8197 0.1055 

1b  
0.01 0.0085 0.0088 0.0087 0.0016 0.9545 3.4141 0.1278 

m  0.6 0.5968 0.6475 0.6224 0.111 0.8984 3.3033 0.1952 

  0.4 0.4048 0.5296 0.4757 0.1873 0.5145 2.6048 0.475 

2  
0.6 0.6078 0.6494 0.615 0.1196 0.8613 2.9523 0.3991 

2b  
0.4 0.4019 0.4606 0.4569 0.0648 0.7495 2.7918 0.0711 

3  
0.8 0.8939 0.8291 0.8097 0.0686 0.9168 3.3007 0.1118 

2a  
0.8 0.8048 0.7345 0.7379 0.0542 0.8343 2.0085 -0.3429 

2  
0.012 0.0119 0.0361 0.0135 0.0591 0.1741 7.7933 3.5091 

  0.6 0.612 0.7114 0.6984 0.0966 0.6872 2.8955 3.5091 

4  
0.6 0.6008 0.3986 0.425 0.1971 0.3407 2.1327 -0.2043 

1  
0.6 0.6093 0.7164 0.689 0.1164 0.6856 2.2785 0.6272 

2n  
0.05 0.0503 0.1576 0.1282 0.1128 0.0749 2.6142 0.7447 

2c  
0.5 0.4974 0.4118 0.4696 0.2072 0.5728 3.0905 0.0748 

1  
0.25 0.2488 0.3895 0.3146 0.2191 0.3152 2.7367 0.6718 

2  
0.8 0.8015 0.6295 0.6491 0.164 0.4863 3.8669 -1.0228 

1a  
0.25 0.2481 0.2103 0.2229 0.0507 0.6871 2.8838 -0.3324 

1c  
0.02 0.0202 0.0858 0.0636 0.0698 0.0615 2.9949 0.9196 

1n  
0.03 0.0304 0.1235 0.0814 0.1203 0.0789 7.0481 1.8694 

 

 
 

Figure 4. The dynamic behaviour of predicted and observed data for ND model system (1) 
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Table 2 shows the prior distribution for each parameter; 
original parameter or literature value  L

, least square 

estimated
 LSQ

, mean  mean , median  median
 , standard 

deviation  std  of the model and the convergence of each 

parameter for 10,000 numbers of simulations. Convergence of 
MCMC samples can be studied graphically by plotting 
autocorrelation Figure as showing in the (Figure 5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The parameter convergence oscillates within the confidence 
interval and stabilizes around zero with 220 lags as per Figure 
5 indicates.  The Figure 6 represents the marginal distribution 
of samples that depict the Gaussian distribution.  The results 

for Figure 7 show the chain of some parameter 1 , 1b and 2b
at least shows good mixing. The plots in Figure 8 show the 
chain parameters in pair for some parameters, some pair shows 

a positive correlation like the mixing between   and 2  (4, 5) 

and m and 
2  (3, 5). The kurtosis and skewness of parameters 

are computed and results are summarized in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

35915                                        Alfred Hugo et al. Parameter estimation of eco-epidemiological model for Newcastle disease in Tanzania 

 

 
 

Figure 5. MCMC trace plots. The vertical axis represents samples and the horizontal axis represents number of iterations 
 

 
 

Figure 6. Marginal distribution plot together with mean of MCMC samples (green) and the original parameter values (black) 
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Figure 7.  Markov chain Monte Carlo (MCMC) scatter plots 
 

The vertical axis represents samples and the horizontal axis represents number of iterations 
 

 
 

Figure 8. Correlation of pair parameters 

 

 
 

Figure 9. Histogram plot for 
0R distribution plot, x-axis represents 

0R  while y-axis represents populations. The trend shows an 

increase in 
0R  tends to decrease chickens population and vice versa 

 

     
0

0.5

1

1

     
0

0.01

0.02

b
1

     
0

0.5

1
m

     
0

0.5

1


2000 4000 6000 8000 10000
0

0.5

1

2

2000 4000 6000 8000 10000
0

0.5

1

b
2

4
6
8

10
12
14

x 10
-3

2

1

0.4
0.6
0.8

3

2

0.2
0.4
0.6
0.8

4

3

0.10.20.30.40.5

0.4
0.6
0.8

5

4 6 8 10 1214

x 10
-3

0.4 0.6 0.8 0.20.40.60.8

4

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

200

400

600

800

1000

1200

1400

1600

1800

2000



Kurtosis and skewness 

 
Skewness characterizes the asymmetry property of a data 
distribution around it is mean and is approximately to normal 
distributions whenever it is values is about zero while kurtosis 
describes the peakedness or flatness behavior of a distribution 
in relation with normal distribution. From the Table 3 it is 
observed that most of the parameters produce the kurtosis of 
about three which is approximately to normal distribution 

while others have high values such as 1 , 2 , and 1n . Some 

parameters have high skewness values as shown in Table 2, 
which indicates that are not normally distributed.  
 
Conclusion 
 
The parameters for compartmental model of chicken and 
human system have been rigorously analyzed. The model was 
well fitted using MLE and MCMC methods for 2014 data 
obtained from five districts in Tanzania. The Figure 3 used as 
motivation of fitting and estimating the Model parameters and 
its’ result illustrated in Figure 4.  From the MCMC numerical 
results, shows that many parameter values agree closely to 
actual data of ND death cases and their kurtosis and skewness 
values have shown good results compared to normal 
distributions. The high deviation of some parameter may be 
caused by random distributions. Therefore, the numerical 
results for this study recommend that for any developed 
mathematical model validation and parameter estimation are 
important aspects before numerical simulations. Hence, result 
to reflect its phenomena.  
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