

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 07, pp.34968-34971, July, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

ABSORPTION AND EMISSION CHARACTERISTICS OF Ho³⁺DOPED ALKALI CHLOROBOROPHOSPHATE GLASSES

^{1,*}Srinivasa Rao, T., ¹Venkateswarlu, C., ¹Viswanadha Reddy, A., ¹Subrahmanyam Naidu, P. and ²Ratnakaram, Y. C.

¹Department of Physics, JawaharBharati Degree College, Kavali-524201, India ²Department of Physics, S.V.University, Tirupati, India

ARTICLE INFO

ABSTRACT

Article History: Received 30th May, 2016 Received in revised form 08th June, 2016 Accepted 17th July, 2016 Published online 31st July, 2016

Key words:

Rare earth ions, Judd - Ofelt parameters, Multiphonon relaxation, Radiative lifetimes, Branching ratios. Alkali chloroborophosphate glasses containing 1 mol% of HoCl₃ were prepared and characterized. The optical absorption spectra of three glasses have been studied in the UV-VIS-NIR region. Ho³⁺ ion has several low lying meta stable levels, which can give rise to transitions at various wavelengths from infrared (IR) to ultraviolet (UV) regions. Racah (E¹, E², E³), spin-orbit (ξ_{4f}), configuration interaction parameters (α,β) and hydrogenic ratios E¹/E³ and E²/E³ are also obtained. Oscillator strengths (*f*) are measured from the absorption spectra and three intensity parameters Ω_{λ} (2, 4 and 6) are calculated. Reasonable agreement between the measured and calculated *f* values has been found. For Ho³⁺ ion, ${}^{5}I_{8} \rightarrow {}^{5}G_{6}$ is the hypersensitive transition. Using Judd–Ofelt intensity parameters, electric dipole line strengths (S_{ed}) and magnetic dipole line strengths (S_{md}) are calculated. From these, radiative lifetimes (τ_{R}), branching ratios (β_{R}) and peak stimulated emission cross-sections (σ_{p}), radiative transition rates (A) are calculated. These results were used to predict the possible potential laser transitions.

Copyright©2016, *Srinivasa Rao et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Srinivasa Rao, T., Venkateswarlu, C., Viswanadha Reddy, A., Subrahmanyam Naidu, P. and Ratnakaram, Y. C. 2016. "Absorption and emission characteristics of Ho³⁺doped alkali chloroborophosphate glasses", *International Journal of Current Research*, 8, (07), 34968-34971.

INTRODUCTION

Glasses embedded with rare-earth (RE) ions are very good attractive materials for the development of many optoelectronic devices such as short wavelength (visible) lasers, display devices, sensors and hole burning high density memories etc. due to their laser amplification and up conversion properties (Yang et al., 2008; Liao et al., 2007). Phosphate glasses have become important materials, because of their excellent physical properties such as high thermal stability, high gain density, low optical dispersion, low refractive index and low melting point (Praveena et al., 2008). Phosphate glasses are finding ever increasing applications in many emerging technologies e.g. vitrification of radiative waste (Bergo et al., 2004), photonics, fast ion conducting (Sene et al., 2004), glass metal seals (Wei et al., 2001) and biomedical emerging etc. (Dias et al., 2005). Holmium ion is one of the most important active ion in the rare earth family due to its convenient energy-level structure

Department of Physics, JawaharBharati Degree College, Kavali-524201, India. exploitable in upconversion processes. It is well known that Ho^{3+} ions can produce laser emission in 2.0 and 2.9 µm ranges arising from the transitions, ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ and ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ respectively. Rao et al. (2012) reported the role of modifier oxide in emission spectra and kinetics of Er-Ho co-doped glasses. Optical properties of Ho³⁺ doped novel oxyfluoride glasses were studied by Feng et al. (2007). Balaji et al. (2011) reported efficient 2.0 μ m emission from Ho³⁺ doped tellurite glass sensitized byYb³⁺ ions. Investigation on visible luminescence of Ho³⁺ doped PbO-H₃BO₃-TiO₂-AlF₃-Ho₂O₃ contents lists available at glasses was carried out by Suhasini et al. (2012). There are some reports concerning laser in the green part of the spectrum corresponding to the transitions from the excited state, ⁵S₂ to the ground state (Yu et al., 1965; Podkolzina et al., 1976). Piatkowski (2008) reported the excited state absorption spectroscopy of ZBLAN: Ho^{3+} glass. Earlier, Ratnakaram *et al.* (2003) studied optical properties of Ho^{3+} ion in different mixed alkali borate glasses. In the present work, we report the optical properties of Ho³⁺ ion doped in alkali chloroborophosphate glasses on optical absorption and emission properties in three glass matrices. Various spectroscopic parameters; Racah (E¹, E² and E³), spin-orbit (ξ_{4f}) and configuration interaction

^{*}Corresponding author: Srinivasa Rao, T.

 (α) are deduced. Using Judd-Ofelt theory, radiative and nonradiative properties are studied and some of the potential lasing transitions are identified. From the emission spectra, emission cross section is evaluated to select laser transitions.

MATERIALS AND METHODS

Ho³⁺ doped alkali chloroborophosphate glasses with chemical composition 39 Na(PO₃)₆ - 30B₂O₃ -10BaCl₂ -20RCl- 1HoCl₃ were prepared using the melt quenching technique and designated as glasses A, B and C according to the content of alkali R= Li, Na and K respectively. The appropriate mixtures of these compounds were thoroughly crushed in an agate mortar in order to have proper mixing and homogeneity. Then the homogeneous mixtures are melted at a temperature range of 950-1050 °C for 30 min. depending on the composition. The melts are then poured on a preheated (200 °C) brass mould and annealed at 300 °C for about 1 h to remove thermal strains. Then the glass samples are allowed to cool to room temperature and are polished for optical measurements. The glass densities and refractive indices are measured. Using the measured glass densities and refractive indices, lanthanide ion concentrations, are obtained. The non-crystalline behavior of these glasses is tested through XRD profiles which are recorded using Seifert X-ray diffractometer.

The optical absorption spectrum is measured using JASCO V-570 spectrometer. The luminescence spectra are obtained using SPEX Fluorolog–2 fluorometer (Model–II).

RESULTS AND DISCUSSION

X-ray diffraction

The XRD spectra of Ho³⁺ doped alkali chloroborophosphate glass matrices were recorded and they exhibit a broad diffuse scattering at small angles instead of crystalline peaks, confirming a long range structural disorder characteristic of amorphous network and thus glassy state was confirmed.

Spectroscopic Parameters

The room temperature optical absorption spectra of Ho³⁺ ion in alkali chloroborophosphate glasses are shown in Fig. 1. A total of eleven absorption bands have been observed in all the three glasses, which are rather intense, but do not overlap too much. This allows an accurate location of the energy positions and their corresponding assignments from the ⁵I₈ ground state. The spectral intensity of an absorption band can be expressed in terms of the oscillator strength (f_{exp}) of the absorption transition using (Carnall *et al.*, 1978) as

$$f_{\rm exp} = 4.32 \times 10^{-9} \int \varepsilon(v) dv$$

Table 1. Experimental and calculated oscillator strengths (x10⁶) and Judd-Ofelt intensity parameters (Ω_{λ} x10⁻²⁰) (cm²) (λ =2, 4, 6) of Ho³⁺ ions in alkali chloroborophosphate glasses

Transition	Glass A		Glass B		Glas	s C
	f _{exp}	f_{cal}	f_{exp}	\mathbf{f}_{cal}	f_{exp}	\mathbf{f}_{cal}
⁵ L-	7 502	7.043	8 695	7 801	7 098	6 3 2 7
5L6	5.470	5.285	5.632	5.828	4.548	4.629
⁵ F ₅	8.535	10.656	5.999	9.424	6.425	8.444
⁵ S ₂ , ⁵ F ₄	12.390	13.024	11.318	13.109	8.466	11.109
⁵ F ₃	3.623	5.948	3.990	6.766	3.081	5.458
${}^{5}F_{2}, {}^{3}K_{8}$	3.378	3.390	3.392	3.351	2.279	3.115
⁵ G ₆	65.751	65.775	46.301	46.360	47.628	47.681
⁵ G ₅	8.736	6.270	6.229	1.901	6.355	3.170
rms						
deviation	± 1.441		±2.29		± 1.876	
Ω_2	17.636		13.385		13.266	
$\mathbf{\Omega}_4$	5.466		1.656		2.761	
Ω_6	9.266		10.567		8.525	

Table 2. Predicted branching ratios (β_R) and the integrated cross sections ($\sum x10^{-}18$ cm) for certain selected potential laser transitions of Ho³⁺ in alkali chloroborophosphste glasses

SLJ	olr 1rl	Glass A		G	Glass B		Glass C	
	S.F.J.	β_R	Σ	β_R	Σ	β_R	Σ	
⁵ G ₅	⁵ I ₆	0.104	7.647	0.117	5.488	0.114	5.614	
	⁵ I ₇	0.555	26.934	0.674	21.007	0.612	20.494	
	⁵ I ₈	0.282	8.467	0.134	2.562	0.207	4.273	
⁵ F ₃	⁵ I ₇	0.266	10.378	0.210	8.358	0.232	7.827	
	⁵ I ₈	0.583	12.837	0.657	14.570	0.620	11.759	
⁵ F ₄	⁵ I ₈	0.852	22.150	0.887	22.129	0.867	18.792	
⁵ S ₂	⁵ I ₇	0.398	14.083	0.396	16.028	0.396	12.882	
	⁵ I ₈	0.526	19.691	0.531	11.080	0.526	8.882	
⁵ F ₅	⁵ I ₇	0.187	7.981	0.180	6.898	0.183	6.265	
	⁵ I ₈	0.761	14.616	0.759	12.906	0.754	11.565	
⁵ I ₄	⁵ I ₆	0.372	4.456	0.375	4.921	0.396	4.087	
	⁵ I ₇	0.472	1.819	0.468	2.012	0.451	1.615	
	⁵ I ₈	0.099	0.145	0.104	0.164	0.099	0.131	
⁵ I ₄	⁵ I ₇	0.570	6.345	0.567	6.973	0.559	5.559	
	⁵ I ₈	0.388	1.281	0.395	1.390	0.393	1.128	
⁵ I ₄	⁵ I ₇	0.103	4.206	0.091	4.268	0.089	3.463	
	⁵ I ₈	0.897	6.136	0.909	6.749	0.911	5.366	
⁵ I4	${}^{5}I_{8}$	1.000	7.549	1.000	8.301	1.000	6.818	

Fig. 1. Optical absorption spectrum of Ho³⁺ doped alkali chloroborophosphate glass-A

Fig.2. Emission spectrum of Ho³⁺ doped alkali chloroborophoshate glass-A

where $\varepsilon(v)$ is the molar absorption coefficient in (mol cm)⁻¹, v is the transition energy in cm⁻¹ and dv is the half bandwidth of the transition. The oscillator strengths measured for all the observed transitions and Judd-Ofelt intensity parameters for the three glass matrices are given in Table 1. These oscillator strengths are larger in magnitude suggesting that the nonsymmetric terms in the crystal field expansion are higher in glass A, B and C or in other words Ho³⁺ ion is situated in a lower symmetry. The small rms deviations indicate good agreement between the experimental and calculated spectral intensities which shows the validity of Judd-Ofelt theory (Judd, 1962; Ofelt, 1962). It is well known that the parameter, Ω_2 exhibits the dependency on the covalency between rare earth ions and ligand anions, since Ω_2 reflect the asymmetry of the local environment at the Ho³⁺ ion site (Jorgensen and Reisfeld, 1983). ${}^{5}I_8 \rightarrow {}^{5}G_6$ is the hypersensitive transition (HST) for Ho³⁺ ion in all the three glasses. These transitions will obey the selection rules $L \leq 0$, $J \leq 0$ and S=0 and they are sensitive to the environment.

Branching Ratios

The branching ratios (β_R) and cross-sections for the stimulated emission (Σ) calculated for certain selected excited

luminescent levels are shown in Table 2. It should be noted that the branching ratios do not depend strongly on the type of the glass host in which Ho³⁺ is incorporated. It is well established that the majority of potential laser lines possess large branching ratios (β_R) as well as cross-sections for the stimulated emission (Σ). Examination of Table 2 shows that the laser transitions ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ and (${}^{5}S_{2}$, ${}^{5}F_{4}$) $\rightarrow {}^{5}I_{8}$ have greater branching ratios (β_R) and cross-sections which are consistent with most other Ho³⁺ doped rare earth lasers (Caird, 1974). It is interesting to note that the ${}^{5}F_{4} \rightarrow {}^{5}I_{8}$ transition may be more important than ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ transition for green laser emission and therefore the relative positions of the ${}^{5}S_{2}$ and ${}^{5}F_{4}$ energy levels may have the large effect on laser performance.

Emission spectra

The photoluminescence spectra of Ho^{3+} doped alkali chloroborophosphate glasses recorded under excitation wavelength 448 nm are shown in Fig.2. The emission spectra contains two transitions (${}^{5}\text{F}_{4}$, ${}^{5}\text{S}_{2}$) $\rightarrow {}^{5}\text{I}_{8}$ and ${}^{5}\text{F}_{5}\rightarrow {}^{5}\text{I}_{8}$. Peak stimulated emission cross-section (σ_{P}) for the above two transitions are calculated to know the lasing transition.

Conclusion

In the present work, optical absorption spectra of Ho³⁺ doped alkali chloroborophosphate glasses were recorded in the UV-VIS and NIR region. The energy levels of the absorption spectrum have been analysed through the FI Hamiltonian model. A reasonable agreement was obtained between the experimental and calculated energy levels. The Judd-Ofelt intensity parameters have been calculated. The calculated oscillator strengths obtained using these parameters are in good agreement with the experiment. Significant optical emission properties, such as radiative transition probabilities, radiative lifetimes, integrated cross-sections for the stimulated emission, branching ratios, ground state and excited state absorptions have been theoretically predicted for certain selected potential laser transitions. Judd–Ofelt theory thus provides a satisfactory basis for the interpretation of absorption band intensities of induced electric dipole transitions and also appears to be a power tool in the identification and prediction of various laser transitions. The results presented herein may open the way for the development of efficient frequency up conversion devices based on Ho³⁺ doped alkali chloroborophosphste glasses.

Acknowledgements

One of the authors Dr. T. Srinivasa Rao expresses his thanks to the University Grants Commission for providing the financial assistance in the form of Minor Research Project - No. F MRP-5787/15 (SERO/UGC) dated JANUARY 2015.

REFERENCES

- Balaji S., A.D. Sontakke, R. Sen, K. Annapurna, Opt. Mater. Express 1 (2011) 138.
- Bergo P., S. T. Reis, W. M. Pontuschka, J. M. Prison, C. C. Motta, J. Non-Cryst.Solids, 336 (2004) 159.
- Caird J.A. "Theoretical Analysis of Rare Earth Laser Materials", in Optical Society of America Spring Meeting Program, Washington, D.C. (1974).
- Carnall, W. T., Hessler, j. P. & Wagner, F., jnr J. Phys. Chem., 1978, 82, 2152.
- Dias A. G., J. M. S. Skakle, I. R. Gibson, M. A. Lopes, J. D. Santos, J. Non-Cryst, Solids., 35 (2005) 810.
- Feng L., J Wang, Q. Tang, L. Liang, H. Liang, Q. Su, J. Lumin. 124 (2007) 187.
- Jorgensen C. K. and R. Reisfeld, "Judd-Ofelt parameters and Chemical banding", Journal of the Less Common Metals, Vol. 93, no. 1, PP. 107-112, 1983.
- Judd, B. R. Phys. Rev., 1962, 127, 750.
- Liao M., L. Hu, Y. Fang, J. Zhang, H. Sun, S. Xu, L. Zhang, Spectrochim. Acta A 68 (2007) 531.
- Ofelt, G. S. J. Chem. Phys., 1962, 37, 511.
- Piatkowski D., K. Wisniewski, M. Rozanski, Cz. Koepke, M. Kaczken, M. Klinczak, R. Plimczak, R. Piramidowicz, M. Malinowski, J. Phys.: Condens. Matter 20 (2008) 155201 (11pp)
- Podkolzina I.G., A.M. Tkaczuk, V.A. Fedorov, P.P. Feo lov, Opt. Spektrosk. 40 (1976) 196.
- Praveena R., V. Venkatramu, P. Babu, C.K. Jayasankar, Physica B 403 (2008) 3527–3534.
- Raghava Rao P., N. Venkatramaiah, Y. Gandhi, V. Ravi Kumar, I.V. Kityk, N. Veeraiah, Spectrochim. Acta Part A 86 (2012) 472.
- Ratnakaram Y.C., R.P.S. Chakradhar, K.P. Ramesh, J.L. Rao and J. Ramakrishna J. Mater. Sci., 38(2003)833.
- Sene F. F., J. R. martinelli, L. Gomes, J. Non-Cryst. Solids 348 (2004) 63.
- Suhasini T., B.C. Jamalaiah, T. Chengaiah, J. Suresh Kumar, L. Rama Moorthy, Physica B 407 (2012) 523.
- Wei J. Y., Y. Hu and L. G. Hwa, J. Non-Cryst. Solids., 288 (2001) 140.
- Yang C.F., Q.Y. Zhang, T. Li, D.M. Shi, Z.H. Jiang, Spectrochim. Acta A 69 (2008) 41.
- Yu, K. Voronko, A.A. Kaminskii, V.V. Osiko, A.M. Prokhorov, JETP Lett. 1 (1965) 3.
