RESEARCH ARTICLE

ON CON-K-NORMAL MATRICES

${ }^{1}$ Krishnamoorthy, S., ${ }^{1}$ Gunasekaran, K. and ${ }^{2}$ Arumugam, K.

${ }^{1}$ Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India 612001
${ }^{2}$ Department of Mathematics, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India 609305.

ARTICLE INFO

Article History:

Received $25^{\text {th }}$ October, 2011
Received in revised form $16^{\text {th }}$ November, 2011
Accepted $14^{\text {th }}$ December, 2011
Published online $31^{\text {st }}$ January, 2012

Key words:

Con-k-normal,
Con-k-unitary.

INTRODUCTION

Let $\mathrm{C}_{\mathrm{nxn}}$ be the space of nxn complex matrices. For a matrix $A \in \square{ }_{n \times n}, \quad \bar{A}, A^{T}, A^{*}, A^{-1}$ and $\quad A^{\dagger}$ denote conjugate, transpose, conjugate transpose, inverse and Moore-Penrose inverse of a matrix ' A ' respectively. Let ' k ' be a fixed product of disjoint transpositions in $\mathrm{S}_{\mathrm{n}}=\{1,2 \ldots \mathrm{n}\}$ (hence, involutory) and let ' K ' be the associated permutation matrix. The concept of Con-k-normal matrices is introduced asis a generalization of k -real and k -hermitian and normal matrices [2]. The con-k-unitary is also discussed in this paper. Cleairly ' K ' satisfies the following properties: $\left.K^{2}=I_{(\text {(and }}\right)$ $K=K^{T}=K^{*}=K^{\dagger}$

Basic Definitions

Definition 2.1[3]: A matrix $A \in \square{ }_{n \times n}$ is said to be k-normal, if $A A^{*} K=K A^{*} A$.
That is, $a_{i j} \bar{a}_{n-k(j)+1 k(i)}=\bar{a}_{k(j) n-k(i)+1} a_{i j} ; \quad \mathrm{i}, \mathrm{j}=1,2 \ldots \mathrm{n}$.
Definition 2.2[3]: A matrix $A \in \square_{n \times n}$ is said to be k -
unitary, if $A A^{*} K=K A^{*} A=K$.

Con-k-normal matrices

Definition 3.1: A matrix $A \in \square_{n \times n}$ is said to be con-knormal, if $A A^{*} K=\overline{K A^{*} A}$.
That is, $A A^{*} K=K A^{T} \bar{A}$ (or) $K A^{*} A=\bar{A} A^{T} K$

[^0]
Abstract

The concept of conjugate k-normal (con-k-normal) matrices is introduced. Some basic results of con-k-normal, con-k-unitary are discussed.

$\Leftrightarrow \bar{A} A^{T} K=K A^{*} A \Leftrightarrow A^{T}$ is con-k-normal.
(i) \Leftrightarrow (iv): A is con-k-normal $\Leftrightarrow A A^{*} K=K A^{T} \bar{A}$
$\Leftrightarrow\left(A A^{*} K\right)^{*}=\left(K A^{T} \bar{A}\right)^{*}$
$\Leftrightarrow K^{*}\left(A^{*}\right)^{*} A^{*}=(\bar{A})^{*}\left(A^{T}\right)^{*} K^{*} \Leftrightarrow K A A^{*}=A^{T} \bar{A} K$
Pre and post multiply by K on both sides,
$\Leftrightarrow A A^{*} K=K A^{T} \bar{A} \Leftrightarrow A^{*}$ is con-k-normal.
(i) $\Leftrightarrow(\mathrm{v}): A$ is con-k-normal $\Leftrightarrow A A^{*} K=K A^{T} \bar{A}$
$\Leftrightarrow\left(A A^{*} K\right)^{-1}=\left(K A^{T} \bar{A}\right)^{-1}$
$\Leftrightarrow K^{-1}\left(A^{*}\right)^{-1} A^{-1}=(\bar{A})^{-1}\left(A^{T}\right)^{-1} K^{-1}$
$\Leftrightarrow K\left(A^{-1}\right)^{*} A^{-1}=\overline{\left(A^{-1}\right)}\left(A^{-1}\right)^{T} K$
$\Leftrightarrow A^{-1}$ is con-k-normal, if A^{-1} exist.
(i) \Leftrightarrow (vi): A is con-k-normal $\Leftrightarrow A A^{*} K=K A^{T} \bar{A}$
$\Leftrightarrow\left(A A^{*} K\right)^{\dagger}=\left(K A^{T} \bar{A}\right)^{\dagger}$
$\Leftrightarrow K\left(A^{\dagger}\right)^{*} A^{\dagger}=\overline{\left(A^{\dagger}\right)}\left(A^{\dagger}\right)^{T} K \Leftrightarrow A^{\dagger}$ is con-k-normal.
(i) \Leftrightarrow (vii): A is k-normal $\Leftrightarrow A A^{*} K=K A^{T} \bar{A}$
$\Leftrightarrow \lambda^{2}\left(A A^{*} K\right)=\lambda^{2}\left(K A^{T} \bar{A}\right)$
$\Leftrightarrow(\lambda A)\left(\lambda A^{*}\right) K=K\left(\lambda A^{T}\right)(\lambda \bar{A})$
$\Leftrightarrow(\lambda A)(\lambda A)^{*} K=K(\lambda A)^{T} \overline{(\lambda A)}$
$\Leftrightarrow(\lambda A)$ is con-k-normal.
Theorem 3.4:.If A and B are con-k-normal matrices. Then $(\mathrm{A}+\mathrm{B})$ and $(\mathrm{A}-\mathrm{B})$ are con-k-normal matrix.

Proof: Given A and B are con-k-normal. Then
$A A^{*} K=K A^{T} \bar{A}$ \qquad
and $B B^{*} K=K B^{T} \bar{B}$
Adding equations (1) and (2), we get,
$A A^{*} K+B B^{*} K=K A^{T} \bar{A}+K B^{T} \bar{B}$
Pre and post multiply by $\left(A B^{*}+A^{*} B\right) K$ and
$K\left(A^{T} \bar{B}+B^{T} \bar{A}\right)$ we get,
$\left(A B^{*}+A^{*} B\right) K+\left(A A^{*}+B B^{*}\right) K=K\left(A^{T} \bar{A}+B^{T} \bar{B}\right)+K\left(A^{T} \bar{B}+B^{T} \bar{A}\right)$
$\Rightarrow\left[A\left(A^{*}+B^{*}\right)+B\left(A^{*}+B^{*}\right)\right] K=K\left[(\bar{A}+\bar{B}) A^{T}+(\bar{A}+\bar{B}) B^{T}\right]$
$\Rightarrow \quad(A+B)\left(A^{*}+B^{*}\right) K=K\left(A^{T}+B^{T}\right)(\bar{A}+\bar{B})$
$\Rightarrow \quad(A+B)(A+B)^{*} K=K(A+B)^{T} \overline{(A+B)}$
Therefore $(A+B)$ is con-k-normal.
Similarly, we can prove $(A-B)$ is con-k-normal.
Theorem 3.5: Let $A \in \square_{n \times n}$,
(i). If A is con- k -normal, then (iA) is con-k-normal.
(ii). If A is con-k-normal, then (-iA) is con-k-normal.

Proof: (i) Given A is con-k-normal.

That is, $A A^{*} K=K A^{T} \bar{A} \Rightarrow i^{2}\left(A A^{*} K\right)=i^{2}\left(K A^{T} \bar{A}\right)$
$\Rightarrow \quad(i A)\left[-(i A)^{*}\right][] K=K(i A)^{T}[-\overline{(i A)}]$
$\Rightarrow \quad(i A)(i A)^{*} K=K(i A)^{T} \overline{(i A)}$
$\Rightarrow(\mathrm{iA})$ is con-k-normal.
Similarly, we can prove (-iA) is con-k-normal.
Theorem 3.6: Let $A \in \square_{n \times n}$ be con-k-normal, then $A \bar{A}$ and $\bar{A} A$ are k-normal.
Proof: Let A be con-k-normal, if $A A^{*} K=K A^{T} \bar{A}$.
We have, $(A \bar{A})(A \bar{A})^{*} K=(A \bar{A})\left(A^{T} A^{*}\right) K=A\left(\bar{A} A^{T}\right) A^{*} K$ $=A\left(K^{2} \bar{A} A^{T}\right) A^{*} K$
$=A\left(A^{*} A\right) A^{*} K=\left(A A^{*}\right)^{2} K$
and $K(A \bar{A})^{*}(A \bar{A})=K\left(A^{T} A^{*}\right)(\bar{A} A)=\left(K A^{T} \bar{A}\right)\left(A^{*} A\right)$
$=\left(A A^{*} K\right)\left(A^{*} A\right)$
$=\left(A A^{*}\right)\left(A A^{*}\right) K=\left(A A^{*}\right)^{2} K$
From (3) and (4), we have, $(A \bar{A})(A \bar{A})^{*} K=K(A \bar{A})^{*}(A \bar{A})$ Therefore, $A \bar{A}$ is k-normal.
Similarly, we can prove $\bar{A} A$ is k-normal.
Remark 3.7: The reverse implication $A \bar{A}$ and $\bar{A} A$ are knormal, then A is con-k-normal is false.
Theorem 3.8[1]: Let $A, B \in \square_{n \times n}$ be con-k-normal matrices, then $A \bar{B}=B \bar{A} \Rightarrow A^{T} \bar{B}=B A^{*}$.
In words, if A is con-commutes with some matrix B , then A^{T} con-commutes with B as well.
Proof: Given A and B are con-k-normal matrices, then
$A A^{*} K=K A^{T} \bar{A}$ and $B B^{*} K=K B^{T} \bar{B}$. Since $A \bar{B}=B \bar{A}$ is trivially true for $\mathrm{B}=\mathrm{A}$. Let A be con- $\mathrm{k}-$ normal and let B be
con-commute with A. $A \bar{B}=B \bar{A}$
For, $\hat{A}=\left[\begin{array}{ll}0 & A \\ \bar{A} & 0\end{array}\right]$ and $\hat{B}=\left[\begin{array}{ll}0 & B \\ \bar{B} & 0\end{array}\right]$. We have
$\hat{A} \hat{B}=A \bar{B} \oplus \bar{A} B$ and $\hat{B} \hat{A}=B \bar{A} \oplus \bar{B} A$.
$\Rightarrow \hat{A}$ and \hat{B} commutes.
Since A is con-k-normal, then A^{*} is con-k-normal. $\Rightarrow \hat{A}$ is con-k-normal, then $\Rightarrow \hat{A}^{*}$ is con-k-normal.
Therefore, $\hat{A}^{*} \hat{B}=\hat{B} \hat{A}^{*}$ which is equivalent to $A^{T} \bar{B}=B A^{*}$.

Con-k-unitary matrices

Definition 4.1: A matrix $A \in \square_{n \times n}$ is said to be con-kunitary, if $A A^{*} K=K A^{T} \bar{A}=K$.

Example 4.2: Let $A=\left[\begin{array}{cc}\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]$ is con-k-unitary for $k=(1,2)$, where $K=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Theorem 4.3: For $A \in \square_{n \times n}$ the following conditions are equivalent.
(i) $\quad A$ is con-k-unitary.
(ii) $\quad \bar{A}$ is con-k- unitary.
(iii) $\quad A^{T}$ is con-k- unitary.
(iv) A^{*} is con-k- unitary.
(v) $\quad A^{-1}$ is con-k- unitary, if A^{-1} exist.
(vi) A^{\dagger} is con-k- unitary.
(vii) λA is con-k- unitary, where λ is a real number.

Theorem 4.4: Let $A, B \in \square_{n \times n}$. If A and B are con-k-
unitary matrices, then AB is con-k-normal.
Proof: Let A and B are con-k-unitary, then
$A A^{*} K=K A^{T} \bar{A}=K$ and $B B^{*} K=K B^{T} \bar{B}=K$.
To prove AB is con-k-normal.
Now, $(A B)(A B)^{*} K=A B\left(B^{*} A^{*}\right) K=A\left(B B^{*}\right) A^{*} K=A A^{*} K=K$
$K(A B)^{T}(\overline{A B})=K\left(B^{T} A^{T}\right)(\bar{A} \bar{B})=K B^{T}\left(A^{T} \bar{A}\right) \bar{B}=K B^{T} \bar{B}=K$
From (5) and (6), we have
$(A B)(A B)^{*} K=K(A B)^{T}(\overline{A B})$.
Therefore AB is con-k-normal.
Corollary 4.5: Let $A, B \in \square_{n \times n}$. If A and B are con-kunitary matrices, then AB is con-k-unitary. Theorem 4.6: Let $A, B \in \square_{n \times n}$. If A and B are con-kunitary matrices, then BA is con-unitary.
Proof: Let A and B are con-k-unitary, then

$$
A A^{*} K=K A^{T} \bar{A}=K \ldots \ldots \ldots \ldots \text { (7) }
$$

and $B B^{*} K=K B^{T} \bar{B}=K$ \qquad
From (7) and (8), we have

$$
A A^{*} K B B^{*} K=K A^{T} \bar{A} K B^{T} \bar{B}=K^{2}=I
$$

$$
\begin{aligned}
& \Rightarrow \quad K B B^{*} K=K A^{T} \bar{A} K=I \\
& \Rightarrow \quad B B^{*}=A^{T} \bar{A}=I
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad B K^{2} B^{*}=A^{T} K^{2} \bar{A}=I \\
& \Rightarrow \quad B A A^{*} K K B^{*}=A^{T} K K B^{T} \bar{B} \bar{A}=I \\
& \Rightarrow \quad(B A)(B A)^{*}=(B A)^{T}(\overline{B A})=I
\end{aligned}
$$

Therefore, BA is con-unitary.
Theorem 4.7: Let $A \in \square_{n \times n}$ and $A=S U, A^{T}=S V$, where U and V are con-k-unitary matrices and S is a symmetric matrix, then A is con-k-normal.
Proof: Let $A=S U$ and $A^{T}=S V$, where U and V are con-kunitary.
Then,

$$
\begin{equation*}
A A^{*} K=(S U)(S U)^{*} K=S U U^{*} \bar{S} K=S U U^{*} K^{2} \bar{S} K=S \bar{S} K \tag{9}
\end{equation*}
$$

$\overline{K A^{*} A}=K A^{T} \bar{A}=K(S V)\left(V^{*} \bar{S}\right)=S K V^{*} \bar{S}=S V^{*} V \bar{S}=S V^{*} \bar{S} K=\bar{S} K$
From (9) and (10), we have $A A^{*} K=\overline{K A^{*} A}=K A^{T} \bar{A}$.
Therefore, A is con-k-normal.

REFERENCES

[1]. Fabbender, H., Ikramov, H., " Conjugate-normal matrices: A survey," Linear Alg. Appl. Vol.429(2008), pp.1425-1441.
[2]. Hill, R.D., Water, S.R., "On k-real and k-hermitian matrices," Linear Alg. Appl. Vol.169(1992), pp.17-29.
[3]. Krishnamoorthy, K., and Subash, R., "On k-normal matrices" International J. of Math. Sci. \& Engg. Appls. Vol. 5 No. II (2011), pp. 119-130.
[4]. Krishnamoorthy, S., Vijayakumar, R., "Some Equivalent Condition on s-normal matrices," Int.J.Cont.Math.Sciences, Vol.29(2009),pp. 1449-1454.
[5]. Meenakshi, A. R., Krishnamoorthy, S., "On k-EP matrices," Linear Alg. Appl. Vol.269(1998), pp. 219-232.

[^0]: *Corresponding author: profkrishnamoorthy@gmail.com

