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INTRODUCTION

The attempt in occupations of these particles are formulated separately for Ideal Bose Gas and Ideal Fermi Gas

Ideal Bose gas

Bose gas containing bosons is realized, computed energies and number of particles on approximation leads to ideal gas. Special
characteristics of these particles (Bosons) typically include are (i) indistinguishable (ii)exhibit no change in sign of the wave
function with interchange of particles (iii) No restriction to the number of particles occupying a given state  (iv) characterized by
integral spin termed as Bosons. Such a realization of Bose gas with special kind of particles were initiated by S.N. Bose and

further extended by Einstein. The occupation of these particles in various quantum states ig reveal its population in

corresponding to thi state  characterized with energy
i .The total number of particles corresponding to whole Bose gas of r

quantum states of bosons is  
r

r Nn and total energy
En

r
rr  

. Particles like bosons are photons, liquid helium, gluons, etc.

No. of particles in a range  to  d corresponding to thi quantum state is
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Where
ig

kT
,

1
,   is the degeneracy of thi state corresponding to energy

i ,  is chemical potential, k is Boltzmann
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constant and T is absolute temperature.  For B.E statistics the total number of particles summed over all the possible states is N i.e

 
r

r Nn . As the number of particles in a state must be greater than zero(cannot be zero) 0 1)exp( 

kT

 . The kinetic

energy of particle is
m

p
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 .The number of quantum states with volume V whose momentum lies between p and dpp  is
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 with a total of 12 s spin values. On generalization to total states of whole gas we transform from

momentum to energy variables as these related to kinetic energy
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As per the distribution the total number of particles in terms of mean number inN ~ of particles  and their occupation is
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eZ  << 1  is the limiting case of Boltzmann distribution.

Evaluation of integral in computation of E and N requires solving term in denominator
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Ideal Fermi gas

Fermi gas containing fermions is realized, computed energies and number of particles on approximation leads to ideal gas. Special
characteristics of these particles (fermions) typically include are these particles (i) are indistinguishable(ii)exhibit  change in sign
of the wave function with interchange of particles(iii) with restriction to the number of particles occupying a given state is either 0
or 1  (iv) characterized by half integral spin termed as fermions. Such a realization of Fermi gas with special kind of particles were

initiated by Fermi and further extended by Dirac. The occupation of these particles in various quantum states ig reveal its

population in corresponding to thi state  characterized with energy
i .The total number of particles corresponding to whole
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In the limit 0T chemical potential o with completely degenerate and mean occupation number is 1n for

0  and 0n for 0  . The limiting chemical potential 0 corresponds to Fermi energy f of the system. At

0T all the particles upto states f  are filled with one particle in each state and all the particles with energy f  are

empty.

Conclusion

Equation of Ideal Bose gas and Fermi gas equations were obtained. These equations resemble with Ideal gas at high temperature
for both Bose and Fermi gases. Particles though indistinguishable are realized with statistical aspects i.e. their occupation or
distribution among various energy levels with their correspondence implicated in its mathematical form.
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