ISSN: 0975-833X

GENERALIZED INVERSE OF K-Normal Matrix

S. Krishnamoorthy and *R. Subash

${ }^{1}$ Department of Mathematics, A.V.C College of Engineering, Mannampandal, Mayiladuthurai, Tamilnadu, India 609305.
${ }^{2}$ Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India 612001.

ARTICLE INFO

Article History:

Received $28^{\text {th }}$ August, 2011
Received in revised form
$19^{\text {th }}$ September, 2011
Accepted $28^{\text {th }}$ October, 2011
Published online $20^{\text {th }}$ November, 2011

ABSTRACT

The generalized inverses of k-normal matrix are discussed by its schur decomposition.

Key words: Schur decomposition, k-normal, k-unitary, k-diagonal, generalized inverse.

INTRODUCTION

Let $\square^{n \times m}$ denote the set of all complex nxm matrices. Let ' k ' be a fixed product of disjoint transposition in $S_{n}=\{1,2, \ldots, n\}$ (hence, involutary) and let ' K ' be the associated permutation matrix of ' k '. Let A^{*} be denote the conjugate transpose matrix $A \in \square^{n \times m}$ and by $\square_{r}^{n \times n}$ the set of all matrices $A \in \square^{n \times n}$ such that $\operatorname{rank}(A)=r . I_{n}$ denotes the unit matrix of order n . The Moore-Penrose inverse of $A \in \square^{n \times m}$, is an unique matrix X satisfying the four equations
$A X A=A$.
$X A X=X$
$(A X)^{*}=A X$
$(X A)^{*}=X A$.
and it is denoted by $X=A^{\dagger}$. Let $A\{i, j, \ldots, l\}$ denote the set of matrices $X \in \square^{m \times n}$ which satisfy the corresponding above four equations. A matrix $X \in A\{i, j, \ldots, l\}$ is called an $\{i, j, \ldots, l\}$-inverse of A and is denoted by $A^{(i, j, \ldots, l)}$. All of these matrices are called the generalized inverse of A. In this paper, we discuss expressions for generalized inverses of a special class of matrices, k-normal matrices, using their schur decomposition.

Definition 1.1: A matrix $A \in \square^{n \times n}$ is said to be k-normal, if $A A^{*} K=K A^{*} A$.

Example 1.2: If $A=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & i \\ -i & 0 & 0\end{array}\right)$ is k-normal matrix and $X=\left(\begin{array}{ccc}0 & 0 & i \\ 0 & 0 & 0 \\ 0 & -i & 0\end{array}\right)$. These two matrices satisfies the above four equations (1), (2), (3) and (4). Therefore X is a MoorePenrose inverse of a singular matrix A and it is denoted by A^{\dagger}

Moore-Penrose inverse of k-normal matrix:

In this section $\{1\},\{2\},\{1,2\},\{1,3\},\{1,4\},\{1,2,3\},\{1,2,4\}$, $\{1,3,4\},\{2,3\},\{2,4\},\{2,3,4\}$ - inverses of a k-normal matrices are discussed.

Theorem 2.1: Let $A \in \square{ }_{r}^{n \times n}$ be a k-normal matrix. Then all matrices $A^{(1)}, A^{(2)}$ are given by
(i) $A^{(1)}=V\left(\begin{array}{ll}\Sigma^{-1} & X_{12} \\ X_{21} & X_{22}\end{array}\right) V^{*} K$
${ }^{(i i)} A^{(2)}=V\left(\begin{array}{cc}\Sigma^{-1} P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1} & \Sigma^{-1} P\binom{E}{0} \\ \left(\begin{array}{ll}F & 0\end{array}\right) P^{-1} & F E\end{array}\right) V^{*} K$,
where $X_{12} \in \square^{r \times(n-r)}, X_{21} \in \square^{(n-r) \times r}$,
$X_{22} \in \square^{(n-r) \times(n-r)}, E \in \square^{s \times(n-r)} \quad$ and $F \in \square^{(n-r) \times s} \quad$ are arbitrary sub matrices and $0 \leq s \leq r$.
Proof: Let $X \in \square^{n \times n}$ be given by

$$
K V^{*} X V=\left(\begin{array}{ll}
X_{11} & X_{12} \tag{5}\\
X_{21} & X_{22}
\end{array}\right)_{n-r}^{r}
$$

(i) Using the k-unitary diagonal decomposition of A , we have that $X \in A\{1\}$ if and only if
$\left(\begin{array}{ll}\Sigma & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)\left(\begin{array}{ll}\Sigma & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}\Sigma & 0 \\ 0 & 0\end{array}\right)$.
Hence $X_{11}=\Sigma^{-1}$ and X_{12}, X_{21}, X_{22} are arbitrary matrices of suitable size.
(ii) Similarly, X satisfying $\mathrm{XAX}=\mathrm{X}$ if and only if $\left(\begin{array}{ll}X_{11} \Sigma X_{11} & X_{11} \Sigma X_{12} \\ X_{21} \Sigma X_{11} & X_{21} \Sigma X_{12}\end{array}\right)=\left(\begin{array}{cc}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$

$$
\begin{equation*}
X_{11} \Sigma X_{11}=X_{1} \tag{5}
\end{equation*}
$$

$X_{11} \Sigma X_{12}=X_{12}$
$X_{21} \Sigma X_{11}=X_{21}$
$X_{21} \Sigma X_{12}=X_{22}$
Pre multiplying both sides Σ in equation (5), we get $\Sigma X_{11} \Sigma X_{11}=\Sigma X_{11}$
$\Rightarrow \quad\left(\Sigma X_{11}\right)^{2}=\Sigma X_{11}$ \qquad
A matrix $\sum X_{11} \in \square_{s}^{r \times r}$, satisfies (9) if and only if then their exist nonsingular matrix $P \in \square^{r \times r}$ such that $\Sigma X_{11}=P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}, \quad$ where $0 \leq s=\operatorname{rank}\left(X_{11}\right) \leq r$. Hence $X_{11}=\Sigma^{-1} P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}$.
Now, equations (6) and (7) have the form,
(6) $\Rightarrow \quad X_{11} \Sigma X_{12}=X_{12}$ \Rightarrow
$\Sigma^{-1} P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1} \Sigma X_{12}=X_{12} \Rightarrow P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1} \Sigma X_{12}=\Sigma X_{12}$
$\Rightarrow\left(\begin{array}{rr}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1} \Sigma X_{12}=P^{-1} \Sigma X_{12}$
And (7) $\Rightarrow X_{21} \Sigma X_{11}=X_{21} \quad \Rightarrow{ }_{X_{21} P}\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}=X_{21}$
$\Rightarrow X_{21} P=X_{21} P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right)$ from which we conclude that $P^{-1} \Sigma X_{12}=\binom{E}{0} \underset{r-s}{s}$ and

$$
s \quad r-s
$$

$$
X_{21} P=\left(\begin{array}{ll}
F & 0
\end{array}\right)
$$

$\Rightarrow X_{12}=\Sigma^{-1} P\binom{E}{0}$ and $X_{21}=\left(\begin{array}{ll}F & 0\end{array}\right) P^{-1}$, where E, F are arbitrary sub matrices of suitable size. Substituting (8), we have $X_{22}=X_{21} \Sigma X_{12}=\left(\begin{array}{ll}F & 0\end{array}\right) P^{-1} \Sigma \Sigma^{-1} P\binom{E}{0}$
$\Rightarrow X_{22}=\left(\begin{array}{ll}F & 0\end{array}\right) P^{-1} P\binom{E}{0} \quad \Rightarrow X_{22}=\left(\begin{array}{ll}F & 0\end{array}\right)\binom{E}{0} \quad \Rightarrow$ $X_{22}=F E$.

Corollary 2.2: Let $A \in \square_{r}^{n \times n}$ be a k-normal matrix. Then any $\{1,2\}$-inverse is given by $A^{(1,2)}=V\left(\begin{array}{cc}\Sigma^{-1} & \Sigma^{-1} P E \\ F P^{-1} & F E\end{array}\right) V^{*} K$, where $P \in \square_{r}^{r \times r}, E \in \square^{r \times(n-r)}$ and $F \in \square^{(n-r) \times r}$ are arbitrary matrices.
Proof: Considering the expressions for $A^{(1)}$ and $A^{(2)}$. From Theorem 2.1, we get that $\Sigma^{-1} P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}=\Sigma^{-1}$ holds if and only if $\mathrm{s}=\mathrm{r}$, which implies that $X_{12}=\Sigma^{-1} P E$, $X_{21}=F P^{-1}$ and $X_{22}=F P^{-1} \Sigma \Sigma^{-1} P E=F E$.
Lemma 2.3: Let $A \in \square_{r}^{n \times n}$ be a k-normal matrix.
(i) Solutions of the equation (3) are given by the following general expression
$X=V\left(\begin{array}{cc}X_{11} & 0 \\ X_{21} & X_{22}\end{array}\right) V^{*} K$, where
$X_{11}=D_{1}+U_{1}+\Sigma^{-1}\left(\Sigma U_{1}\right)^{*}$,
$D_{1}=\operatorname{diag}\left(x_{k(1) k(1)}, \ldots, x_{k(r) k(r)}\right)$.
$x_{k(i) k(i)}= \begin{cases}i y_{k(i) k(i)}, & \lambda_{k(i)}^{2}<0 \\ y_{k(i) k(i)}, & \lambda_{k(i)}^{2}>0 \\ y_{k(i) k(i)}-\frac{i \lambda_{k(i)}^{(2)}}{\lambda_{k(i)}^{(1)}} y_{k(i) k(i)}, & \lambda_{k(i)}^{2} \notin R\end{cases}$
$y_{k(i) k(i)} \in R, i=1,2, \ldots, r, U_{1} \in \square^{r \times r}$ is an arbitrary strictly upper triangle matrix and X_{21}, X_{22} are arbitrary matrices of suitable size.
(ii) Solutions of the equation (4) are given by the following general expression $X=V\left(\begin{array}{cc}\tilde{X}_{11} & \tilde{X}_{12} \\ 0 & \tilde{X}_{22}\end{array}\right) V^{*} K$, where $\tilde{X}_{11}=D_{2}+U_{2}+\left(U_{2} \Sigma\right)^{*} \Sigma^{-1}$, $D_{2}=\operatorname{diag}\left(\tilde{x}_{k(1) k(1)}, \ldots, \tilde{x}_{k(r) k(r)}\right)$.
$\tilde{x}_{k(i) k(i)}=\left\{\begin{array}{ll}i y_{k(i) k(i)} & \lambda_{k(i)}^{2}<0 \\ y_{k(i) k(i)} & \lambda_{k(i)}^{2}>0 \\ y_{k(i) k(i)}-\frac{i \lambda_{k(i)}^{(2)}}{\lambda_{k(i)}^{(1)}} y_{k(i) k(i)} & \lambda_{k(i)}^{2} \notin R\end{array}\right.$,
$y_{k(i) k(i)} \in R, i=1,2, \ldots, r, U_{2} \in \square^{r \times r} \quad$ is \quad an \quad arbitrary strictly upper triangle matrix and $\tilde{X}_{21}, \tilde{X}_{22}$ are arbitrary matrices of suitable size.
Proof: If X satisfies the equation (1), then $\left(K V^{*} X V\right)^{*}\left(\begin{array}{cc}\Sigma^{*} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}\Sigma & 0 \\ 0 & 0\end{array}\right)\left(K V^{*} X V\right) \quad$ using the
decomposition of X given by (5), we get $\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)^{*}\left(\begin{array}{cc}\Sigma^{*} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}\Sigma & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$
$\Rightarrow\left(\begin{array}{ll}X_{11}^{*} & X_{12}^{*} \\ X_{21}^{*} & X_{22}^{*}\end{array}\right)\left(\begin{array}{cc}\Sigma^{*} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}\Sigma & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$
$\Rightarrow\left(\begin{array}{ll}X_{11}^{*} \Sigma^{*} & 0 \\ X_{21}^{*} \Sigma^{*} & 0\end{array}\right)=\left(\begin{array}{cc}\Sigma X_{11} & \Sigma X_{12} \\ 0 & 0\end{array}\right)$
So, $X_{11}^{*} \Sigma^{*}=\Sigma X_{11} \Rightarrow\left(\Sigma X_{11}\right)^{*}=\Sigma X_{1}$ (11) and $X_{12}=0$.

Let $X_{11}=\left(x_{k(i) k(j)}\right)_{r \times r}$. Then the equation (11) is equivalent to $\overline{\lambda_{k(j)} x_{k(j) k(i)}}=\lambda_{k(i)} x_{k(i) k(j)}, i, j=1,2, \ldots, r$. this holds $\frac{\text { if }}{\lambda_{k(i)} x_{k(i) k(i)}}=\lambda_{k(i)} x_{k(i) k(i)}, i=1,2, \ldots, r$.
$x_{k(j) k(i)}=\frac{1}{\lambda_{k(j)}} \overline{\lambda_{k(i)} x_{k(i) k(j)}}, i<j, i, j=1,2, \ldots, r$.
Let $X_{11}=D_{1}+U_{1}+L_{1}$, where D_{1}, U_{1} and L_{1} are the kdiagonal, strictly upper triangle and strictly lower triangle part of X_{11}, respectively. The equation (12) holds if and only if D_{1} has the form given by (10). The equation (13) is equivalent to $L_{1}=\Sigma^{-1}\left(\Sigma U_{1}\right)^{*}$.
The proof of part (ii) is analogous.
Lemma 2.4: Let $A \in \square_{r}^{n \times n}$ be a k-normal matrix. Solutions of the equation (3) and (4) are given by the following general expression $\quad X=V\left(\begin{array}{cc}D & 0 \\ 0 & X_{22}\end{array}\right) V^{*} K$,
$D=\operatorname{diag}\left(d_{k(1) k(1)}, \ldots, d_{k(r) k(r)}\right)$.
$d_{k(i) k(i)}=\left\{\begin{array}{ll}i y_{k(i) k(i)} & \lambda_{k(i)}^{2}<0 \\ y_{k(i) k(i)} & \lambda_{k(i)}^{2}>0 \\ y_{k(i) k(i)}-\frac{i \lambda_{k(i)}^{(2)}}{\lambda_{k(i)}^{(1)}} y_{k(i) k(i)} & \lambda_{k(i)}^{2} \notin R\end{array}\right.$,
$y_{k(i) k(i)} \in R, i=1,2, \ldots, r$, and $\quad X_{22} \in \square^{(n-r) \times(n-r)}$ is an arbitrary matrix.
Proof: If $X \in \square^{n \times n}$. By lemma (2.3), X satisfies the equation (3) and (4) if and only if $X_{21}=0, \tilde{X}_{12}=0, X_{22}=\tilde{X}_{22}$, $D_{1}=D_{2}, U_{1}=U_{2}, \Sigma^{-1}\left(\Sigma U_{1}\right)^{*}=\left(U_{2} \Sigma\right)^{*} \Sigma^{-1}$
\qquad (14).

Now, we have $U=\left(\Sigma^{*} \Sigma\right)^{-1} U \Sigma \Sigma^{*}$, where $U=U_{1}=U_{2}$, that
$U=\operatorname{diag}\left(\left|\lambda_{k(1)}\right|^{-2}, \ldots,\left|\lambda_{k(r)}\right|^{-2}\right) U \operatorname{diag}\left(\left|\lambda_{k(1)}\right|^{2}, \ldots,\left|\lambda_{k(r)}\right|^{2}\right)$
.................. (15)
This equation holds if and only if U is a k-diagonal matrix.
However, U is a strictly upper triangle matrix, so a necessary and sufficient condition for (15) is $\mathrm{U}=0$. Taking in (10),
$\begin{cases}y_{k(i) k(i)}=\frac{-1}{\lambda_{k(i)}^{(2)}}, & \lambda_{k(i)}^{2}<0, \\ y_{k(i) k(i)}=\frac{1}{\lambda_{k(i)}^{(1)}}, & \lambda_{k(i)}^{2}>0, \\ y_{k(i) k(i)}=\frac{\lambda_{k(i)}^{(1)}}{\left|\lambda_{k(i)}\right|^{2}}, & \lambda_{k(i)}^{2} \notin R \\ y_{k(i) k(i)} \in R, i=1,2, \ldots, r,\end{cases}$
We get that $D_{1}=\Sigma^{-1}$, so for $U_{1}=0$. We obtain that any such solution of the equation (3) satisfies $\mathrm{AXA}=\mathrm{A}$.

Therefore, we may now pass on to expressions for the elements of $\mathrm{A}\{1,3\}$ and $\mathrm{A}\{1,4\}$.

Theorem 2.5: Let $A \in \square_{r}^{n \times n}$ be a k-normal matrix. Then the elements of $\mathrm{A}\{1,3\}, \mathrm{A}\{1,4\}$ are given by $A^{(1,3)}=V\left(\begin{array}{cc}\Sigma^{-1} & 0 \\ X_{21} & X_{22}\end{array}\right) V^{*} K, A^{(1,4)}=V\left(\begin{array}{cc}\Sigma^{-1} & \tilde{X}_{12} \\ 0 & \tilde{X}_{22}\end{array}\right) V^{*} K$,
respectively, where $X_{21}, X_{22}, \tilde{X}_{12}, \tilde{X}_{22}$, are arbitrary matrices of suitable size.
Proof: The proof is analogous.
Theorem 2.6: Let $A \in \square_{r}^{n \times n}$ be a k-normal matrix. Then the general forms of the elements of $\mathrm{A}\{1,2,3\}, \mathrm{A}\{1,2,4\}, \mathrm{A}\{1,3$,
4\} are given by $A^{(1,2,3)}=V\left(\begin{array}{cc}\Sigma^{-1} & 0 \\ F P^{-1} & 0\end{array}\right) V^{*} K$,
$A^{(1,2,4)}=V\left(\begin{array}{cc}\Sigma^{-1} & \Sigma^{-1} \tilde{P} E \\ 0 & 0\end{array}\right) V^{*} K$,
$A^{(1,3,4)}=V\left(\begin{array}{cc}\Sigma^{-1} & 0 \\ 0 & X_{22}\end{array}\right) V^{*} K$, respectively, where
$P, \tilde{P} \in \square_{r}^{r \times r}, F \in \square^{(n-r) \times r}, E \in \square^{r \times(n-r)}, X_{22} \in \square^{(n-r) \times(n-r)}$
, are arbitrary matrices.
Proof: The proof is analogous.
Theorem 2.7: Let $A \in \square_{r}^{n \times n}$ be a k-normal matrix. Then $\{2$, $3\}$, $\{2,4\}$-inverse of A are given by $A^{(2,3)}=V\left(\begin{array}{cc}\Sigma^{-1} M_{1} M_{1}^{*} & 0 \\ F M_{1}^{*} & 0\end{array}\right) V^{*} K$,
$A^{(2,4)}=V\left(\begin{array}{cc}N_{1} N_{1}^{*} \Sigma^{-1} & N_{1} E \\ 0 & 0\end{array}\right) V^{*} K$ respectively.
Where $M_{1}, N_{1} \in \square^{r \times s}$ satisfy $M_{1}^{*} M_{1}=I_{s}, N_{1}^{*} N_{1}=I_{s}$ and $F \in \square^{(n-r) \times s}, E \in \square^{s \times(n-r)}$ are arbitrary matrices.
Proof: Let $X \in \square^{n \times n}$. By Theorem 2.1 (ii) and Lemma 2.3
(i), we have that $X \in A\{2,3\}$ if and only if

$$
D_{1}+U_{1}+\Sigma^{-1}\left(\Sigma U_{1}\right)^{*}=\Sigma^{-1} P\left(\begin{array}{cc}
I_{s} & 0 \tag{16}\\
0 & 0
\end{array}\right) P^{-1}
$$

$\Sigma^{-1} P\binom{E}{0}=0$
$\left.\begin{array}{l}\binom{F}{0} P^{-1}=X_{21} \\ F E=X_{22}\end{array}\right\} \ldots \ldots \ldots . .(17)$.
First, we will prove that there exist D_{1}, U_{1}, P such that (16) holds. If we multiply the equation (16) from the left side by Σ,

We get,
$\Sigma D_{1}+\Sigma U_{1}+\left(\Sigma U_{1}\right)^{*}=P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}$.
$\Sigma D_{1}=\left(\gamma_{k(i) k(i)}\right)_{r \times r}=\left\{\begin{array}{cl} & \\ -\lambda_{k(i)}^{(2)} y_{k(i) k(i)} & \lambda_{k(i)}^{2}<0, \\ \lambda_{k(i)}^{(1)} y_{k(i) k(i)} & \lambda_{k(i)}^{2}>0, \\ \frac{\left|\lambda_{k(i)}\right|^{2}}{\lambda_{k(i)}^{(1)}} y_{k(i) k(i)} & \lambda_{k(i)}^{2} \notin R\end{array}\right.$
From the equation (18) we conclude the following
(i) $\quad \Sigma D_{1}$ is real k-diagonal matrix.
(ii) $\quad \Sigma D_{1}+\Sigma U_{1}+\left(\Sigma U_{1}\right)^{*}$ is a k-hermitian matrix.
(iii) The k-eigen value set of $P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}$ is $\{1$, $0\}$.That is, $\Sigma D_{1}+\Sigma U_{1}+\left(\Sigma U_{1}\right)^{*}$ that is, $P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}$ must be k-hermitian positive semi-definite matrix with k-eigen values 0 and 1 . Because of that, the matrix P can be replaced by the k-unitary matrix M such that $M\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) M^{*}=\Sigma D_{1}+\Sigma U_{1}+\left(\Sigma U_{1}\right)^{*}=P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}$

$$
s \quad r-s
$$

Let $\quad M=\left(\begin{array}{ll}M_{1} & M_{2}\end{array}\right)$.
Then $M\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) M^{*}=M_{1} M_{1}^{*}$
Denoted by $M_{1} M_{1}^{*}=\left(m_{k(i) k(i)}\right)_{r \times r}=\Lambda_{M}+L_{M}+L_{M}^{*}$, where $\Lambda_{M}=\Sigma D_{1}, L_{M}^{*}=\Sigma U_{1}$
When $\quad y_{k(i) k(i)}= \begin{cases}\frac{-m_{k(i) k(i)}}{\lambda_{k(i)}^{(2)}}, & \lambda_{k(i)}^{2}<0 \\ \frac{m_{k(i) k(i)}}{\lambda_{k(i)}^{(1)}}, & \lambda_{k(i)}^{2}>0 \\ \frac{\lambda_{k(i)}^{(1)} m_{k(i) k(i)}}{\mid \lambda_{k(i)}^{2}}, & \lambda_{k(i)}^{2} \notin R\end{cases}$
So, we have found $P(M), U_{1}, D_{1}$ such that the equation (16) holds.

If we put the k -unitary matrix M in (17) instead of P , we obtain that $E=0, X_{22}=0$ and $X_{21}=F M_{1}^{*}$, where F is an arbitrary matrix of suitable size.
The proof for the $\{2,4\}$-inverse is analogous.
Theorem 2.8: let $A \in \square_{r}^{n \times n}$ be a k-normal matrix. The every $\{2,3,4\}$-inverse of A is of the form
$A^{(2,3,4)}=V\left(\begin{array}{cc}\Sigma^{-1} T\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) T^{T} & 0 \\ 0 & 0\end{array}\right) V^{*} K, \quad$ where $\quad \mathrm{T} \quad$ is \quad a permutation matrix, $S \in\{0,1, \ldots, r\}$.
Proof: Let $X \in \square^{n \times n}$ be a $\{2,3,4\}$-inverse of A . then $X \in A\{2\}$ and by Lemma (2.4), we get that

$$
\begin{align*}
& D=\Sigma^{-1} P\left(\begin{array}{cc}
I_{s} & 0 \\
0 & 0
\end{array}\right) P^{-1} . \tag{19}\\
& \left.\begin{array}{l}
0=\Sigma^{-1} P\binom{E}{0} \\
\begin{array}{l}
0=\left(\begin{array}{ll}
F & 0
\end{array}\right) P^{-1} \\
X_{22}=F E
\end{array}
\end{array}\right\} \cdots \cdots \cdots \cdots
\end{align*}
$$

$$
\left.0=\left(\begin{array}{ll}
F & 0
\end{array}\right) P^{-1}\right\} \ldots \ldots \ldots \ldots(20) \text { from (20) it follows }
$$

$E=0, F=0$ and $X_{22}=0$.
Now, we have to prove that there exist D and a non-singular matrix P such that the equation (19) holds.
By (19), we have that $\Sigma D=\Sigma^{-1} P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}$, so ΣD, that is, $P\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) P^{-1}$ is a k-diagonal matrix with k-eigen values 0 or 1 and $\operatorname{rank}(D)=s$.
Therefore, there exists a permutation matrix T such that $\Sigma D=T\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) T^{T}$.
Denote by $\Gamma=\left(\gamma_{k(i) k(i)}\right)_{r}=T\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) T^{T}$.
$\Sigma D=\Gamma$ holds if $y_{k(i) k(i)}= \begin{cases}\frac{-\gamma_{k(i)}}{\lambda_{k(i)}^{(2)}} & \lambda_{k(i)}^{2}<0, \\ \frac{\gamma_{k(i)}}{\lambda_{k(i)}^{(1)}} & \lambda_{k(i)}^{2}>0, \\ \frac{\lambda_{k(i)}^{(1)} \gamma_{k(i)}}{\left|\lambda_{k(i)}\right|^{2}} & \lambda_{k(i)}^{2} \notin R,\end{cases}$
Finally, we get $D=\Sigma^{-1} T\left(\begin{array}{cc}I_{s} & 0 \\ 0 & 0\end{array}\right) T^{T}$. Hence the proof.

REFERENCE

[1] Krishnamoorthy, S., and Subash, R., "On k-normal matrices", International J. of Math. Sci. \& Engg. Appls., 5(II) (2011), 119-130.
[2] Zheng, B., and Bapat, R.B., "Characterization of generalized inverses by a rank equation" Applied Mathematics and Computation, 151 (2004), 53-67.
[3] Chuning, He., "General forms for Moore-Penrose inverses of real symmetric matrix under the congruence decomposition condition" , Numerical mathematics(in Chinese). 28(3) (2006), 236-242.
[4] Horn, R.A., Johnson, R., "Matrix Analysis", Cambridge University Press, 1985.
[5] Shufang, Xu., "Theory and methods of matrix computations", Beijing University Press, 1995.
[6] Penrose, R., "A Generalized inverse for matrices" Proc. Cambridge Philos. Soc., 51(1955), 406-413.
[7] Drazin, M.P., "Pseudo Inverses in Associate Rings and Semi groups" Amer. Math. Mon, 65(1985), 506-514.
[8] Wang, G., Wei, Y., and Qiao, S., "Generalized Inverses" Theory and Computations, Science Press (Beijing) 2004.
[9] Moore, E.H., "On the reciprocal of the general algebraic matrix (abstract)" Bull. Amer. Math. Soc., 26(1920), 394-395.

