

COMPONENT-BASED SOFTWARE ENGINEERING: A PRAGMATIC APPROACH TO SOFTWARE
DEVELOPMENT IN 21

Department of Computer Science, Ebonyi State University, Abakaliki

ARTICLE INFO ABSTRACT

Component
selecting reliable and reusable software components and assembling them within appropriate
software architecture to form a robust software system.
about designs that make a clear separation between the stable parts of the system from the
specification of their composition
concern. In view of the increase i
pragmatic approach that will handle the situation on ground. Although object oriented approach
helped in giving birth to software that reflect the object of the problem domain, the approach d
necessarily produce software architectures that can easily adapt to the changing requirements of users
in this 21
requirements for the system to be built, t
instead the team examines requirements to determine what subset is directly amenable to composition
rather than construction. Component
build high
also bring about significant reduction in the development cost and time since developers can quickly
assemble such systems from a set of reusable softw
the scratch. Furthermore, it will lead to designs that will be easily adapted to meet the changing
needs of users.

Copyright © 2015 Ugah and Ugwu. This is an open access article distributed under the
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

We are living in the computer age when most devices are
computer-based and hence need computer software to function.
Today’s society is information driven society and scientist are
trying their best to come up with both hardware devices and
software systems that would make life easier and help members
communicate effectively without much difficulties. Major
sectors in local, national and international economy such as
telecommunication, electricity generation and distribution,
logistic systems, modern cars and airplanes are actually being
driven by software. From all indications, software is becoming
more and more an integrated part of the 21
Software allows new organizational forms, such as business
process reengineering and virtual organizations which allow
organizations to operate at efficiency levels that are an order of
magnitude better than earlier models (Uwaje, 2012)

*Corresponding author: Ugah, J.O.
Department of Computer Science, Ebonyi State University, Abakaliki
Nigeria.

ISSN: 0975-833X

Article History:

Received 15th June, 2015
Received in revised form
25th July, 2015
Accepted 23rd August, 2015
Published online 16th September, 2015

Key words:

Software Development,
Components-Based,
Reuse,
Pragmatic,
21st Century,
Adaptability

Citation: Ugah, J.O. and Ugwu, G. E.2015. “Component
century”, International Journal of Current Research

RESEARCH ARTICLE

BASED SOFTWARE ENGINEERING: A PRAGMATIC APPROACH TO SOFTWARE
DEVELOPMENT IN 21ST CENTURY

*Ugah, J.O. and Ugwu, G. E.

Department of Computer Science, Ebonyi State University, Abakaliki

ABSTRACT

Component-based software engineering approach to software development employs the techniques of
selecting reliable and reusable software components and assembling them within appropriate
software architecture to form a robust software system. This approach
about designs that make a clear separation between the stable parts of the system from the
specification of their composition. The rising need of software in 21
concern. In view of the increase in demand for software, software engineers need a proactive and
pragmatic approach that will handle the situation on ground. Although object oriented approach
helped in giving birth to software that reflect the object of the problem domain, the approach d
necessarily produce software architectures that can easily adapt to the changing requirements of users
in this 21st century. In component-based software engineering, the software team will first establish
requirements for the system to be built, the architectural design is made and detailed design omitted
instead the team examines requirements to determine what subset is directly amenable to composition
rather than construction. Component-based software engineering would help software developers t
build high-quality, reliable and easily maintainable software that meets user’s requirements. It will
also bring about significant reduction in the development cost and time since developers can quickly
assemble such systems from a set of reusable software components rather than build everything from
the scratch. Furthermore, it will lead to designs that will be easily adapted to meet the changing
needs of users.

is an open access article distributed under the Creative Commons Attribution License, which
distribution, and reproduction in any medium, provided the original work is properly cited.

We are living in the computer age when most devices are
based and hence need computer software to function.

Today’s society is information driven society and scientist are
trying their best to come up with both hardware devices and
software systems that would make life easier and help members

ate effectively without much difficulties. Major
sectors in local, national and international economy such as
telecommunication, electricity generation and distribution,
logistic systems, modern cars and airplanes are actually being

om all indications, software is becoming
more and more an integrated part of the 21st century society.
Software allows new organizational forms, such as business
process reengineering and virtual organizations which allow

iency levels that are an order of
(Uwaje, 2012).

Department of Computer Science, Ebonyi State University, Abakaliki-

Furthermore, most of the devices which aims at increasing
effectiveness and efficiency in diverse sectors of the economy
would not be available without software.
the current situation in the communication sector. There is at
present an explosion of mobile devices in both developed and
the developing countries. Other sectors are also facing similar
situation. In view of this development, most organizations are
realizing the importance of having unequivocal software
architecture for their systems. In trying to come up with such
explicit software architecture, software engineers have been
faced with the challenge of developing multiple, inter
systems from the scratch while pressured by financial and time
constraints. This challenge has made it very essential to
establish a well-defined and proactive approach in order to
build high-quality, reliable, and easily maintainable component
and/or systems that satisfies user requirements and is delivered
on record time (Osuagwu, 2005)
the best approach to adopt in solving this teething problem. It
is our strong belief that component
would proofer solution to this problem.

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 7, Issue, 09, pp.20019-20026, September, 2015

 INTERNATIONAL

Component-based software engineering: a pragmatic approach to software development in 21
International Journal of Current Research, 7, (9), 20019-20026.

 z

BASED SOFTWARE ENGINEERING: A PRAGMATIC APPROACH TO SOFTWARE

Department of Computer Science, Ebonyi State University, Abakaliki-Nigeria

based software engineering approach to software development employs the techniques of
selecting reliable and reusable software components and assembling them within appropriate

This approach is unique because it brings
about designs that make a clear separation between the stable parts of the system from the

. The rising need of software in 21st century is indeed of a great
n demand for software, software engineers need a proactive and

pragmatic approach that will handle the situation on ground. Although object oriented approach
helped in giving birth to software that reflect the object of the problem domain, the approach does not
necessarily produce software architectures that can easily adapt to the changing requirements of users

based software engineering, the software team will first establish
he architectural design is made and detailed design omitted

instead the team examines requirements to determine what subset is directly amenable to composition
based software engineering would help software developers to

quality, reliable and easily maintainable software that meets user’s requirements. It will
also bring about significant reduction in the development cost and time since developers can quickly

are components rather than build everything from
the scratch. Furthermore, it will lead to designs that will be easily adapted to meet the changing

ribution License, which permits unrestricted use,

Furthermore, most of the devices which aims at increasing
effectiveness and efficiency in diverse sectors of the economy
would not be available without software. A typical example is
the current situation in the communication sector. There is at

explosion of mobile devices in both developed and
the developing countries. Other sectors are also facing similar
situation. In view of this development, most organizations are
realizing the importance of having unequivocal software

ir systems. In trying to come up with such
explicit software architecture, software engineers have been
faced with the challenge of developing multiple, inter-related
systems from the scratch while pressured by financial and time

enge has made it very essential to
defined and proactive approach in order to

quality, reliable, and easily maintainable component
and/or systems that satisfies user requirements and is delivered

(Osuagwu, 2005). The question here is- what is
the best approach to adopt in solving this teething problem. It
is our strong belief that component-based software engineering
would proofer solution to this problem.

INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

pragmatic approach to software development in 21st

The last decade has shown that object-oriented technology is
not enough to cope with the rapidly changing requirements of
present-day applications (Mohammad, 2001). The truth is that
object oriented methodology when used helps in developing
rich models that reflect the objects of the problem domain.
But, these models do not necessarily yield software
architectures that can be easily adapted to changing
requirement of users especially in our dynamic present day
society. According to (Rob, 2007), one particular loop hole of
object-oriented methods is that it does not lead to designs that
make a clear separation between computational and
compositional aspects but this separation is common in
component-based systems.

Component-based systems achieve flexibility by clearly
separating the stable parts of the system from the specification
of their composition. It is very clear that building new software
by combining existing and viable software components would
improve and support rapid software development. Rapid
software development will in turn lead to the overall growth in
software industry to a level that would sustain the rising need
of the 21st century. It is therefore imperatives that we adopt
component-based development approach in software
development in our days since the benefits it offers are
enormous. In the section below, we shall take a brief tour of
other software development methodologies to help bring out
the need for this campaign.

Review of software Development Methodologies

Software undergoes through certain phases to evolve.
According to (Alan and Barbara, 2003) the basic software
phases are planning, analysis, design and implementation.
However, other authors may further break these five to more
phases. There are also many software design and development
methodologies that have been in use since the evolution of
software engineering. Some of these methodologies include
the waterfall, rapid application development (RAD), object
oriented Methodology, component-based software engineering
etc. Let us now discuss some of these methodologies.

Waterfall Approach

The waterfall methodology is about the oldest. Waterfall
methodology adopts an approach that is much similar to
construction and manufacturing workflows. It follows a
sequential design process that begins from conception,
analysis, design, construction, testing, implementation, and
maintenance (Nilesh, 2005). The basic concept of the waterfall
methodology is that you move from one step to another
sequentially. It therefore presupposes that you would move
from one phase only when it’s proceeding phase has been
completed. The different phases in waterfall approach include
requirements, design, implementation, verification and
maintenance. In the requirement phase, the analyst analyzes
user’s requirement and performs further investigation of
requirements that enables him to come up with developers’
version of requirements. This phase is usually very critical and
important since most users are usually unable to explain what
they need very clearly. The design phase here focuses on both
architectural and detailed design.

The structures of the envisaged system are formed at this stage.
The programs that are needed and how the individual programs
will work, how the interface design will look like, what data is
required and other aspect of the software are also defined.
Developers translate the design made into codes at the
implementation phase. Any high level language of choice is
employed for the implementation. The verification phase is
when each module and subsystem is tested. The modules and
the subsystems are then integrated and the whole system tested
to verify weather the system works as intended.

In the maintenance phase the system undergoes different
degrees of amendment either addition of more features or
removal and in some ceases restructuring to suite the changing
needs of users. These five phases are followed chronologically
in the waterfall approach. The waterfall approach appears
simple and is easily explainable to the users. Its linear
sequential model also makes it orderly and interesting to
management as well. There is also a strong believe that other
processes depend strongly on the waterfall approach and that it
is a prerequisite to the study of other approaches (Robertson
and Bednar, 2006). As good as the waterfall approach is, it has
a lot of weaknesses that makes it unfit and unreliable for the
development of 21st century software. According to (Nilesh,
2005), some of the weakness of waterfall approach includes
among others the following:

 The waterfall approach does not make allowance for the

change of defined requirements as the project progresses
The implication of this is that software developed using
this approach stand the risk of not fully meeting up with the
requirement of the user.

 Since it does not make allowance for change of defined
requirement, if the user has made an error in their
requirement the whole processes has to be restarted. This
will cause a lot of waste and delay in software
development.

 Another weakness of the waterfall approach is that it is
time consuming. Due to the fact that going back to any
phase already left is difficult, developers’ takes time to
ensure that all necessary issues are settled and documented
before advancing to the next phase.

 Using the waterfall methodology, the whole software
product is only tested at the end. The implication of this is
that critical errors in code (bugs) written early would be
discovered late and at the point when it would be almost
impossible to correct. Such bugs usually affect the overall
performance of the product.

Considering these weaknesses discussed and many others that
we did not highlight here, it is clear that it would be a difficult
task depending on the waterfall approach in developing
software for the 21st century. It will delay the development
process and may not also produce software that can be easily
adapted to the changing needs of users.

Rapid Application Development (RAD): The RAD approach
to software development is also iterative in nature. The three
RAD categories include the phased which involves series of
versions, prototyping (system prototyping) and throw-away
prototyping (design prototyping) (Alan and Barbara, 2003).

20020 Ugah and Ugwu, Component-based software engineering: A pragmatic approach to software development in 21st century

The basic objective of RAD is to provide a platform for fast
development and delivery of high quality systems at a
relatively low investment cost. According to (Nabil and
Govardhan, 2010), RAD produces high quality systems quickly
through the use of iterative approach. Prototyping which is one
of the categories of RAD brings about active user involvements
and computerized development tools.

Computerized development tools such as computer aided
engineering (CASE) tools; Database management tools
(DBMS), graphical user interface builders and host of others
are employed. The RAD approach to system development also
gives room for documentation necessary to facilitates future
development and maintenance (Selecting a Development
Approach, 2008). Although the RAD approach to system
development helps in fast system development and faster
delivery when compared to the waterfall approach, it posses
some inherent weakness that does not suggest that 21st century
software developers should completely rely on it to meet up
with the rising need of robust software in different sphere of
life in our information driven society. Some of the weaknesses
include:

Developers and users must be committed to the series and
quick activities in abridged time structure (Otto et al., 2000).
This is not always easy to meet up by both parties. The RAD
approach requires a system that could be divided into modules
(Contributor, 2006).

 Using this approach may bring about pushing difficult

problems to the future since prototypes could just
demonstrate some functions of the system in order to win
management support.

 It would also take a great effort and planning to have well-
defined interfaces since some modules will be completed
much earlier than others.

In view of these weaknesses and others, we believe that
although RAD is a very good approach to software
development, a more proactive and pragmatic approach such
as the component-based should be used.

Object Oriented Methodology: Object oriented approach
describes the system through a set of business processes it
performs as well as the object classes that these processes deal
with (Benneth and McRobb, 2002). This methodology
employs set of diagrams or models to represent various views
and functionality of a system. Tools that are usually used to
draw these set of diagrams or create this models is the unified
modeling language (UML). Generally object oriented approach
takes the following format (i) identify the information system’s
purpose (ii) identify the information system’s actors and
features (ii) identify the Use Cases and create a Use Case
Diagram (iv) identify Objects and their Classes and create a
Class Diagram (v) create interaction/scenario Diagrams (vi)
create detail Logic for operations (vii) Repeat these processes
as required to refine the plan as the case may be. The states of
the system at each phase of the development may include
inception, elaboration, construction and transition. Inception
deals with the initial work required to set up and agree on terms
of the project (Stevens and Pooley, 2000).

Elaboration deals with putting the basic architecture of the
envisaged system in place (Bell and and Thayer, 1996).
Construction deals with building the system while transition
deals with processes involved in transferring the system to the
clients and users. According to (Booch, 1994), object oriented
analysis and design emerged as a complement to object-
oriented programming in the 1980s. Object-oriented
programming adopts problem solving strategy which
approaches every problem from an object (e.g person, place,
thing or concept) perspective rather than the functional
perspective of traditional approach. This is what the object
oriented approach rides on to come up with robust and dynamic
systems. Object oriented is therefore timely especially with
increased emphasis on graphical user interface (GUI) and
software that runs on distributed and heterogeneous, client-
server (multi-tier) computer hardware platforms across the
Internet.

The truth is that the older software engineering methodologies
have limitations in representing a model of the information
system that can readily be implemented using an object-
oriented programming language primarily due to their focus on
functions or data, not object (Lewis, 1995). Object oriented
approach promises many benefits such as reduction of
development time, and resources required to maintain existing
systems, increase code reuse, and provide a competitive
advantage to organization that use it (Roger, 2001). Although,
object oriented provides the advantages listed above over the
traditional approach, Object oriented approach had not led to
extensive reuse as originally suggested. Single object oriented
system is too detailed and specific and often had to be bound
with an application at compile time (Brown, 1997). This makes
marketing object as components difficult. Again, another
constraints that limits object oriented is its inability to bring
about designs that makes a clear separation between the stable
parts of the system (the components) from the specification of
their composition.

Component-based Software Engineering (CBSE)

Component-based Software engineering (CBSE) is an approach
that emphasizes the design and construction of computer-based
systems using reusable software component (Baoming, 2000).
In today’s society, software takes on a dual role. Software is
both a product and a vehicle for delivering other products. As
a product it delivers the computing potentials embodied by
computer hardware and network of computers that are
accessible by local hardware. It is an information transformer
producing, managing, acquiring, modifying, and transmitting
information in our information driven society.

As a vehicle for delivering other products, software acts as the
basis for the control of the computer (operating system) the
communication of information and the creation and control of
other programs (Dayan, 1999). In view of vital roles software
is playing in our day, the importance of software has grown.
There is therefore a compelling need of technologies that will
make development of high quality software easier, faster, and
less expensive. There is a great need of software development
approaches that would yield software architecture that can
easily adapt to the changing requirement of users in our day.

20021 International Journal of Current Research, Vol. 7, Issue, 09, pp.20019-20026, September, 2015

Component-based software engineering gives room for
flexibility and helps to yield software architectures that adapts
to the changing requirement of users by clearly separating the
stable parts of the system (i.e. component) from the
specification of their composition.

Materials and Methods for CBSE

 Component-based software engineering uses software
integrated circuits which are pieces of reusable and reliable
software which can “fit” into the architectural style specified
for a given system and will exhibit the quality characteristics
that are required for the application. The steps that are used
begin with the software engineering team establishing
requirements for the system to be built using conventional
requirement elicitation techniques. An architectural design is
then established. The software team searches for qualified
reusable components which are in turn adopted if it matches
the design architecture. The adopted components are then
integrated together following the design made to come up with
the desired system. Our simple illustration of the processes
involved in CBSE is shown in Figure 1 below.

It has however been established that component-based software
engineering encompasses two parallel engineering activities
namely domain engineering and component based
development. Based on this premise, a process model that
supports CBSE was established by (Debayan, 2001) as shown
in shown in Figure 2 below.

In domain engineering, the software engineering team explores
an application domain with the specific intent of finding
functional, behavioral, and data components that are candidates
for reuse.

These components are placed in reuse libraries. Domain
engineering is all about finding commonalities among systems
to identify components that can be applied to many systems,
and to identify program families that are positioned to take
fullest advantage of those components (Micheal, 2001). On the
other hand component-based development involves sequence
of component based development activities applied when a
component is proposed for use.

Component-based development elicits requirements from the
customer, selects an appropriate architectural style to meet the
objectives of the system to be built and then selects potential
components for reuse. It goes further to qualify the
components to be sure that they properly fit the architecture for
the subsystem and adapts components if modification must be
made to properly integrate them. Component-based
development now integrates the components to form
subsystems and the application as a whole. In addition, custom
components are engineered to address those aspects of the
system that cannot be implemented using existing components.
These processes actually requires developing wrappers that
glue these reusable components within a given appropriate
software architecture. For a software developer to make use of
the component-based approach to achieve a tangible result, he
must do an extensive analysis into the system to be built and all
its parts. He should seek to have an in-depth understanding of
the different parts of the system otherwise the components in
the resulting system will not be independently producible and
deployable.

In view of this, we wish to now explain briefly how proper
analysis could be carried out in such a manner that it would
lead to selecting appropriate software components.

Figure 1. Processes model for CBSE

Identify
System

Requirements

Establish
Architectural

Design

Search &
Identify

Candidate
Components

Modify
Requirement
According to
Discovered

Component and/or
Developed
components

Develop
In-house

components

Make Component
Selection

Component
Validation

Modify
Architectural

Design if need be

Compose
components

to create system

 Component
Validation

Reusable
Components

found?

Yes

No

20022 Ugah and Ugwu, Component-based software engineering: A pragmatic approach to software development in 21st century

Systems Analysis and Design for CBSE

According to (Jeffrey, 2000), systems analysis is a problem-
solving technique that decomposes a system into its component
pieces for the purpose of studying how well those components
parts work and interact to accomplish their purpose. Systems
analysis is a phase that primarily focuses on the business
problem independent of any technology that could be used to
implement a solution to that problem. Usually, systems
analysis is made up of the preliminary investigation, problem
analysis and requirement analysis. You will know that you
understand the process of systems analysis when you can:

 Define systems analysis and relate the term to the
preliminary investigation, problem analysis, requirement
analysis and decision analysis of the system development
methodology.

 Describe a number of systems analysis approaches for
solving business system problems.

 Describe the preliminary investigation, problem analysis,
requirement analysis and decision analysis phases in terms
of your information system building blocks.

 Describe systems analysis in terms of purpose, users
inputs, outputs, techniques and steps

The ultimate goal of systems analysis is to produce a system
proposal to improve the member services information system.
That proposal will trigger the design construction, and
implementation of proposed system. System analysis is driven
by the business concerns of system owners and system users;
hence, it addresses the data, processes, and interface building
blocks from system owners and system user’s perspective.
Since there are always many approaches to problem solving,
there are also many approaches to systems analysis.

According to (Jeffrey, 2000), the basic processes of analysis is
divided into three steps

 Identifying the current (“as-is”) system.
 Identifying improvements and
 Developing requirements for the proposed (“to-be”) system

When no current system exists, understanding the state of
things is done in a brief manner. This may also be because the
existing system and processes are irrelevant to the future
system or if the project team is using development
methodology in which the “as-is” system is not emphasized.
The analyst needs strong critical thinking skills to be able to
move users “from here to there”. He must have critical
thinking ability to recognize strengths and weaknesses and
then recast an idea in an improved form and also understand
issues so as to develop new business processes. These skills
are needed to thoroughly examine the results of requirements
gathering to identify business requirements and to translate
those requirements into a concept for a new system. Doing
such comprehensive systems analysis would help greatly in
coming with good software architecture and corresponding
reusable software component to use in building the software of
choice.

DISCUSSION

The traditional structured waterfall approach to software
development is good. It is the foundation for most of the newer
software development methodologies. The waterfall approach
is easy to understand and easy to use. It provides structure to
inexperienced analyst or staff (Robertson and Bednar, 2006). It
helps to set requirements and works well when quality is more
important than cost or schedule.

Figure 2. A Process Model that Supports CBSE. Adapted from (Debayan, 2001)

Domain
Analysis

Software
Architecture

Development

Reusable
Component
Developmen

Domain
Model

Structured
Model

Repository
Reusable
Artifacts/

Components

Analysis Architectural
Design

Component
Qualification

Component
Adaptation

Component
Composition

Component
Engineering

Testing

Component
Update

Application

Software

Domain Engineering

Component-Based
Development

20023 International Journal of Current Research, Vol. 7, Issue, 09, pp.20019-20026, September, 2015

However, this approach has many weaknesses which make it
difficult to rely on it for meeting up with the software demand
of 21st century. Some of this weaknesses includes the fact that
thee waterfall approach does not make allowance for the
change of defined requirements as the project progresses. This
may make the software not to fully meet the requirement of
users. It is also time consuming and is only very suitable when
the system requirement is not vague but specific and is not
subject to change. More recent methodologies like the Rapid
Application Development (RAD) address some of these
weaknesses. The RAD approach reduces cycle time and brings
about improved productivity with fewer people and less cost.
RAD minimizes the risk of not achieving customer satisfaction
and business needs.

The RAD approach on its own is hard to use with legacy
system (Robertson and Bednar, 2006). It is best fit for systems
that can be modularized and best when functionality is
delivered in increment. It does not make room for reuse.
Object oriented methodology was later introduced to help
represent data, issues things and people with objects. Object
oriented was to make room for reuse. With time it became
clear that objected oriented could not make room for extensive
reuse, as originally suggested (Selecting a Development
Approach, 2008). It was discovered that a single object-
oriented were too detailed and specific and often had to be
bound with an application at compile time. This made
marketing object as reusable components difficult (Baoming,
2000). Component-based software engineering (CBSE)
introduced. CBSE brought about flexibility and leads to design
that make clear separation between the stable parts of the
system from the specification of their composition.
Component-based software engineering uses software
integrated circuit which are pieces of reusable and reliable
software which can be plugged or unplugged to form a
complete and reliable software system just like the hardware
integrated circuit are assembled together to form a hardware
system.

The components to be used must undergo some standardization
processes so as to check out for some characteristics that will
qualify them for usage. Standardization here means that a
component used in CBSE process has to conform to some
standardized component model. This model may define
component interface, component metadata, documentation,
composition and deployment. According to (Bellur, 2009),
Some of these characteristic include:

 Independent: For any component to qualify for usage in
CBSE, it should be possible to compose and deploy such
components without having to use other specific
components. Every component that could be used must be
able to interact with other components through publicly
defined interfaces.

 Deployable: A component has to be self-contained and
must be able to operate as a stand alone entity on some
component platform that implements the component
model.

 Documented: Usable component have to be fully
documented so that potential users of the component can
decide whether or not they meet their needs.

The structure and semantics of all component interfaces should
be specified as well.

Why Should Software Engineers Move to CBSE

 Based on our discussion so far, it is obvious that there are
number of good reasons why software developers should
consider adopting component-based approach in their work.
The first issue here is that software system in our days are
becoming larger and more complex and in turn customers are
demanding more dependable software that is developed more
quickly and that is less expensive. CBSE is trying to fulfill the
customers demand by bringing about better management of
complexity, quicker development time, and improved quality.
CBSE also give room for extensive reuse of software
components. Users today also expect software to be easy to
maintain in order to decrease maintenance cost and operating
expenses. CBSE will help to effectively handle those
problems.

Some Specific Benefits of CBSE

According to (Pole, 1999), component-based software
development offers among others the under listed advantages
over the conventional software development methodologies:

 CBSE brings about significant reduction in the

development cost and time. This is made possible by
assembling existing set of reusable software component to
build a new system instead of building from the scratch.

 CBSE offers more reliable software. This is basically
because reusable components have been tested and
therefore their quality can be assured.

 CBSE brings about improving the maintainability of
enterprise software systems by allowing new, high-quality
components to replace old ones.

 CBSE makes it easier to manage software development.
Component partitioning enables parallel development
thereby allowing several organizations to be involved in
development of larger and more complex software.

 CBSE brings about enhancing the quality of enterprise
software systems. Usually domain experts develop
components, and then software engineers who specialize in
component software engineering assemble those
components into enterprise software systems.

Disadvantages of CBSE

There is no gain saying that CBSE offers a lot of advantages to
both software developers and software users. Some of these
advantages were highlighted above.
According to (Yang, 1997), CBSE has among other the
following challenges confronting its usage.

 Component trustworthiness: This is the challenge of users
trusting component with no available source code.

 Emergent property prediction: The challenge of being able
to predict the emergent properties of component
composition.

 Time and effort it takes to develop reusable components.
 Reusable component can actually be very expensive
 Conflict between usability and reusability of components.

20024 Ugah and Ugwu, Component-based software engineering: A pragmatic approach to software development in 21st century

Conclusion

This paper discussed the imperatives of adopting component-
based software engineering (CBSE) as a pragmatic approach to
software development in 21st century in other to meet up with
the demands of software in our day. In recent time, software
size and complexity has grown to an advanced stage.
Traditional software development methodologies for building
software from scratch seem to have become more and more
inefficient in terms of productivity, cost and delivery time.
Software is becoming more and more an integrated part of the
society and different kinds of devices which increase
effectiveness and efficiency in diverse human endeavors now
depend on software to operate. In order to meet up with the
requirements of quality, deal with complexity, bring about
flexibility, introduce the concept of reuse and also deliver
software on record time, new software engineering paradigm
like CBSE should be adopted.

Object oriented based development brought about reduction of
development time and resources required to maintain existing
systems, increased code reuse and provided a competitive
advantage to organizations using it. However, it seems to have
not actually led to extensive reuse which is needed dearly at
this time. Component based development builds on the object
oriented but gives more abstract view of the software systems
than the object oriented. Components are totally encapsulated,
they strictly prevents access to their internals while in object
oriented knowledge about objects’ inner working is necessary.
Components exist at different sizes varying from single objects
inside a library to whole applications. Component
technologies therefore allow the representation of the
architecture of software systems as reusable entities. As
software engineers, we have seen the enormous challenges
facing software developers and users. We have noticed that
there is a great need to find a means of solving the problem of
flexibility, usability, robustness. We therefore submit that
component-based software engineering if adopted by software
engineers would help increase efficiency and effectiveness in
software development. It would also help meet the always
changing requirements of software users in this century.

REFERENCES

Alan, D. and Barbara, W. 2003. Systems Analysis and Design.

Second Edition. Hermitage Publishing services. Printed and
bound by Von Hoffiman pres, Inc

Baoming, S. 2000. A model for Component-based Software.
A Thesis Submitted to the Faculty of Computer Science,
Dalhousie University-DalTech, Halifax, Nova Scotia in
partial fulfillment of the Requirement for the degree of
master of computer Science

Bell, T. and Thayer 1996
Bellur. U. 2009. The Role of Components and Standards in

Software Reuse. Available at: http://www.Objs.com/
workshops/ws9801/papers.pdf/

Benneth, S., McRobb, S. 2002. Objected Oriented Systems
Analysis and Design using UML, 2nd edition, London:
McGraw-Hill, 2002

Booch, G. 1994. Object Oriented Analysis and Design with
applications, 2nd edition. The Benjamin/Cummins
Publishing Company, redwood City.CA.

Brown, D. 1997. Object –oriented Analysis: objects in plain
English, New York: John Wiley, 1997

Contributor, M. 2006. Rapid Application Developmet
Methodology Note. Retrieved online from http://articles.
techrepublic.com.com/5100-10878_11-6118423.html

Dayan, H. et al. 1999. Legacy Software Systems Issues.
Progress and challenges. Technical Report TR-74.165-k,
April. Available at http;//www.cas.ibm.com/Toronto/
publications/TR-74/Legacy.html.

Debayan, B. 2001. Component-Based Development:
Application in software Engineering by Indian Statistical
Institute.

Jeffrey, L. et al. 2000. Systems Analysis and Design Methods
5th edition. Published by McGraw-Hill Higher Education
(A division of the McGraw Hill Companies) 1221 Avenue,
New York, NY, 10020. Also available
www.mhhe.com/whitten

Lewis, T. et al. 1995. Object Oriented Application Framework,
Manning Publications Co. Retrieved Online.

Micheal, R. et al. 2001. Component-based Software
Engineering: Technologies, Development Frameworks, and
Quality Assurance Schemes. The Chinese university of
Hong Kong Productivity Council.

Mohammad, S. 2001. An Analysis of component-based
development-maximizing reuse of existing software. A
thesis in partial fulfillments of the requirement for the
award of masters of Science (MSc) degree in information
technology. Retrieved online from:
http://www.peterindia.net/SoftComponentsLinks.html

Nabil, M. and Govardhan, A. 2010. Comparison between five
Models of Software engineering. International Journal of
Computer Science (IJCSI), Vol. &, Issue 5, September
2010. ISSN: 1694-0814: Online at www.IJCSI.org.

Nilesh, P. 2005. The Waterfall Model Explained. Retrieved
online from http/www.buzzle.com

Osuagwu, O. 2005. Software Engineering. A pragmatic and
Technical Perspective. Second Edition. Oliverson
Industrial Publishing House (OIPH). A division of Hi-
Technolohy Concepts (WA) Ltd, 9/14 Mbonu Ojike Street,
Owerri, Imo State Nigeria.

Otto, V., Olesen, R. and Korsaa, M. 2000. Software
Development. A practical view. Delta, Department of
Software engineering. Retrieved online at:
www.delta.dk/iterativ

Pole. T. 1999. An Empirical Study of Representation Methods
for- Reusable Software component, IEEE transactions on
Software Engineering. International Workshop on
Component Based Software Engineering, Los Angeles,
USA.

Rob, M. A. 2007. Dilemma between the structured and Object-
oriented approaches to Systems Analysis and design.
School of Business, University of Houston-clear Lake,
2700 Bay Area Boulevard Houston, Texas. Online at
http://www.msmc.la.edu/include/learning_resources/

Robertson, D. and Bednar, J. 2006. Development
Methodologies: Waterfall Model. Available at : from
:http:// www.inf.ed.ac.uk/ teaching/ courses/ seoc2/ 2004_
2005/slides/methodologies_4up.pdf

20025 International Journal of Current Research, Vol. 7, Issue, 09, pp.20019-20026, September, 2015

Robertson, D. and Bednar, J.A. 2006. Development
Methodologies. Waterfall Model. Retrieved from
http://www.inf.ed.ac.uk/teaching/courses/seoc2/2004_2005
/slides/methodologies_4up.pdf

Roger, P. 2001. Software Engineering; A practitioner’s
Approach, fifth Edition

Selecting a Development Approach. Prepared by Department
of Health and Human Services Centre for Medicare and
Medicated services, February 17, 2005 .Revalidated March
27, 2008.

Software Requirements: Are they really a problem?
Proceedings of the 2nd international conference on software
engineering. IEEE computer society.

Stevens, P. and Pooley, R. 2000. Software Engineering with
Objects and Components. Harlow: Addison-Wesley, 2000.

Uwaje, C. 2012. The Future of Software Development in
Nigeria. A communiqué on Institute of Software
Practitioners of Nigeria- National Software Conference
and competition-Tinapa, Calabar, Cross-River start-
Federal Republic of Nigeria.

Yang, H. et al. 1997. A Design Framework for system Re-
engineering, in Proceedings of Asia Pacific and
International Computer Conference pp 230-250. Available
at: http://www.inf.ed.ac.uk/internationalcconf/comp/SE

20026 Ugah and Ugwu, Component-based software engineering: A pragmatic approach to software development in 21st century

