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ARTICLE INFO                                        ABSTRACT 
 

 
 

 

Fluorescence resonance energy transfer between CdSe (480 nm) quantum dots (donor) and fluorescein 27 
(acceptor) is studied using steady state and time-resolved fluorescence measurements at room temperature in 
toluene based solutions. Decrease in the fluorescence intensity of QD donor and increase in the dye emission 
intensity with increasing concentration of acceptor dye and a significant reduction of the fluorescence lifetime of 
the QDs in the presence of acceptor are noted. The results indicate the occurrence of efficient FRET in this system 
and also a clear dependence of FRET efficiency on the spectral overlap between the QD emission spectrum and 
the dye absorption spectrum. 
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INTRODUCTION 
 
Communication, coupling between quantum dot and dye are central 
themes in numerous scientific efforts of present physical and 
technological interest in physics, chemistry and biology because of 
the extraordinary photophysical properties quantum dots [Crooker             
et al., 2002, Rogach et al., 2009, Somers et al., 2007, Clapp et al., 
2006, Pons et al., 2006]. In the range of 10-100 Å Förster limit               
i.e., “spectroscopic ruler” [Stryer et al., 1978, Lackowicz et  al., 2006, 
Huachang Lu et al., 2008] colloidal semiconductor quantum dots 
provide an alternative replacement to molecular dyes as FRET donor, 
an alternative approach that exploits the readily achievable coupling 
via long-range dipolar interaction which allows QD donor-dye 
acceptor communication via Förster formalism [Dezhurov et al., 
2011, Medintz et al., 2009, Livingston et al., 1957, Pons et  al., 2006, 
Rogach et al., 2008]. Here the donor exciton couples with nearby 
acceptor through coulombic interaction effectively in transferring the 
excitation energy to the lower-energy fluorophore. 
 
Resonance energy transfer provides molecular information that is 
different from that revealed by solvent relaxation, excited-state 
reactions and fluorescence quenching or fluorescence anisotropy. 
These other fluorescence phenomena depend on interactions that are 
less important for energy transfer, except for their effect on the 
spectral properties of the donor and acceptor [Lakowicz et al., 2006]. 
Further Förster energy transfer rate depends critically on the spectral 
overlap integral between normalized donor emission and acceptor 
absorption shapes and on the donor-acceptor coulomb coupling 

( )J  [Scholes et al., 2003]. However, the QD optical properties are 
dictated by the quantum mechanical color-size effect, due to strong 
confinement of the electron-hole pairs [Alivisatos et al., 1996]. Single 
QDs possess very narrow emission spectra with size dependent 
central wavelengths spanning the whole visible spectrum from blue to 
red. Because of small inherent inhomogeneities, even a narrow size 
distribution population is always composed of individual nanocrystals 
of different sizes and thus distinct optical properties. In comparison, 
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molecules in an organic dye sample are identical and heterogeneity is 
the result of uncontrolled environment perturbations [Pons et al., 
2006, Wang et  al., 2001]. When using QDs as FRET donors 
[McGrath et al., 2008], we take advantage of this size heterogeneity 
within a population to extract detailed information on effects of the 
spectral overlap on the Förster energy transfer between QD donors 
and dye acceptors. Because of the distinct narrow emission spectra of 
single nanocrystals, the spectral overlap for a QD population actually 
varies from one individual QD-dye pair to another, which implies that 
a QD emitting in a region of higher acceptor absorbance undergoes a 
significantly higher FRET quenching than a nanocrystal emitting in a 
region of lower absorbance [Pons et al., 2006, Hoefling et al., 2011]. 
We present here a spectroscopic study of the energy transfer from 
excitons confined in CdSe QDs to Fluorescein 27 dye. T. Förster 
[Förster et al., 1948] has described inverse sixth power distance 
dependence of resonance energy transfer wherein at Förster distance 
(R0), half the donor molecules decay by energy transfer and half 
decay by the usual radiative and non-radiative rates [Van der Meer           
et al., 1982, Förster et al., 1959, Andrews et al., 1999, Agranvich          
et al., 1982, Latt et al., 1965] 
 

2 4 1/6
0 0.211( ( ))  (in Å)DR k n Q J                        ……….. 1 

 
and the rate of transfer for donor and acceptor separated by distance r 
is given by 
 

2 6( ) ( )FRET rk k J r k                                   ……….. 2 
 

where 2k is orientation factor and rk is the donor radiative rate. 

( )J   is the spectral overlap integral where corrected donor 
emission spectrum with its area normalized to unity and the acceptor 
absorption profile [Clapp et al., 2004] which is reduces to  

4( ) ( )AJ                                                             ……….. 3 
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Due to the distinct narrow emission spectra of single nanocrystals, the 
spectral overlap for a QD population actually varies from one 
individual QD-dye pair to another [Clapp et al., 2004, Dennis et al., 
2008]. This implies that QD emitting in a region of higher acceptor 
absorbance undergoes a significantly higher FRET quenching than a 
nanocrystal emitting in a lower absorbance region. Thus QD emission 
spectrum will change in both intensity and shape with increasing 
FRET rate and the signal from a population of QDs conjugated to 
acceptor is given by 
 

0
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where 0 ( )S  is the signal from the QDs alone and one can derive 

FRET rate for QDs emitting at specific wavelength   from variation 
in the ensemble emission spectrum ( )S  : 
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Equations 2, 3 and 5 indicate that the FRET rate is also proportional 
to 4( )A    which can be measured independently.  
 

MATERIALS AND METHODS 
 
Fluorescence spectra of the donor (QDs), acceptor (dye) and the 
mixed solutions were recorded using spectrofluorometer (Hitachi, 
Model-F7000) and the uv/vis absorption spectra were obtained using 
spectrophotometer (Hitachi, Model-U2800). The fluorescence 
lifetimes were measured employing picosecond time domain 
spectrometer based on Time Correlated Single Photon Counting 
(TCSPC) technique (IBH Jobin Yvon6.1), described elsewhere 
[Kumaran et al., 2006].  The samples of CdSe 480 nm (2.1 nm size) 
quantum dots were excited at 375 nm using Nano LED in an IBH 
Fluorocube apparatus. The fluorescence emission at the magic angle 
(54.7 ) was dispersed in a monochromator (f/3) aperture and 
counted by a Hamamatsu Micro Channel Plate Photo-multiplier tube 
(R3809 MCP-PMT).  The instrument response function for this 
system is ~52 ps. An iterative fitting program provided by IBH 
(DAS-6) analyzed the fluorescence decay curves. Toluene solutions 
of CdSe 480 nm core QDs (Lumidot, 2.1 nm size) were purchased 
from Sigma-Aldrich Chemicals Co. USA and Fluorescein 27 dye 
from Lambdaphysik, Inc. All the solvents used were of HPLC grade 
and were used without further purification. 
 

RESULTS AND DISCUSSION 
 
Steady-State Measurment 
 
With a view to develop FRET chemical and biosensors based on 
semiconductor QDs, CdSe 480 nm Core QDs are chosen as donor in 
the present study with Fluorescein 27 dye as acceptor.  Each molar 
concentration was studied in free solution under steady state 
condition. (Fig. 1) shows the normalized emission spectra of CdSe 
480 nm core quantum dots in toluene excited with 375 nm light along 
with the absorption spectrum of F27 dye.  F27 dye does not exhibit 
any appreciable absorption at 375 nm and therefore allows exclusive 
excitation of the donor. The photon induced energy transfer from 
donor to acceptor is monitored. A necessary factor to achieve FRET 
phenomena is good spectral overlap between the absorption of 
acceptor and emission spectrum of donor. It is observed that the 
addition of F27 dye to the CdSe solution does not lead to any change 
in the absorption spectrum of QDs. Fig. 2 shows fluorescence spectra 
of CdSe QDs in the presence of varying concentration of F27 dye.  
Upon addition of F27 dye a gradual and significant quenching of the 

donor (CdSe QDs) fluorescence was observed with a simultaneous 
enhancement in the acceptor emission indicating some form of energy 
transfer to acceptor (F27). Consequently, the addition of the acceptor 
in increased proportion results in the presence of more acceptor 
molecules.   Hence, this quenching of QD emission and simultaneous 
enhancement in F27 emission validates and confirms the nonradiative 
resonance energy transfer from CdSe QD to F27 dye. The generously 
proportioned quenching of donor and the use of high acceptor to QD 
ratios will compensate the large separation distance which improves 
the FRET efficiency. Further Pons et.al.,[2008] have observed that the 
FRET efficiency is not constant throughout the PL spectrum of a QD 
population, but is wavelength dependent. Furthermore, heterogeneity 
in the  -dependent FRET rate measured for a sample depended upon 
the QD emission overlap and on whether the QD emission overlaps 
with red or blue regions of the acceptor spectrum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Absorption (a) and emission spectra (b) of CdSe 480 nm QD 
along with absorption of F27 (c) 

 

 
Fig.2. Fluorescence spectra of CdSe 480 (1.0 x 10-3 M) in the presence 
of varying concentrations of F27 dye (acceptor); A) 0, B) 0.8 x 10-6 M, 

C) 1.0 x 10-6 M, D) 3.0 x 10-6 M, E) 6.0 x 10-6 M, F) 8.0 x 10-6 M, G)  
10 x 10-6 M 
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Fig. 3. Normalized plot of the overlap 

4( ) ( )AJ      for 

CdSe 480 nm QD (Plain Blue) together with FRET rate curve 
(Plain, Red) and F27 absorption (dashed black) 
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It is possible to describe this evidently by noticing spectral overlap of 
donor QDs and acceptor, i.e., CdSe 480-F27 pair exhibits some sort 
of redder counterpart of QD emission overlapping with bluer 
counterpart of F27 acceptor, leading to redder QDs population being 
quenched to a greater extent and FRET rate curve (Fig. 3) clearly 
traces the acceptor absorption spectrum. We estimate the Förster 
distance (R0) and intermolecular distance for this pair using Förster 
method as 36.61 Å and 19.39 Å, respectively.  Alphandrey et al., 
[2004] reported the Förster distance of ~30-35 Å between CdTe and 
Rhodamine B dye. Kagan et al., [1996] reported the same order of 
magnitude for highly efficient FRET between QDs of different sizes. 
Medintz and co-workers [2006] have reported the Förster distance in 
the range 42-55 Å for QDs with peptide/dye conjugates.  Hence, it 
reveals that the effect of spectral overlap between QDs emission and 
dye absorption is appreciable. 
 
Time -Resolved Measurements 
 
The nonradiative resonance energy transfer is known to substantially 
alter the exciton lifetime properties of the donor ( D ). Thus, the 
energy transfer process was further examined using fluorescence  

 
 
 
 
 
 
 
 
 
decay analysis by TCSPC Technique. Fig. 4 shows the fluorescence 
decay curves of QDs with and without F27 dye.  The lifetimes in the 
presence and absence of acceptor dye are likely to throw light on the 
FRET efficiency in the chosen donor-acceptor pairs. The samples 
were excited with 375 nm light from LEDs and fluorescence decay 
traces required a sum of three exponential functions to reach low

2 values as well as random distributions of the weighted residuals, 
which are indicators of the goodness of the fits. Decay curves of the 
CdSe 480 nm core QD are multiexponential with three decay 
components as shown in Table 1. The photoluminescence decay of 
CdSe QD is tri-exponential with the average decay time being 53.67 
ns. However, in presence of acceptor its average decay time in the 
presence of the acceptor is 29.13 ns. Thus the lifetime of CdSe QDs 
are significantly shortened upon addition of the F27 dye and it is one 
of the characteristic features of efficient energy transfer in the donor-
acceptor systems. The reduction in lifetime also heralds the 
quenching of the QD emission by the acceptor dye molecules with 
respect to spectral overlap (Fig. 1) where the QD emission overlaps 
with the blue edge of the acceptor absorption spectrum i.e., the redder 
QDs have better overlap with acceptor absorption spectrum than the 
bluer QDs. This results in the decay of the intensity ratio being faster 
for increasing wavelength (Fig. 5) and faster FRET dynamics as we 
move from bluer QDs to the redder QDs. 
 

Conclusion 
 
The higher potential of the QDs-dye nano assembly combination than 
the typical organic donor and acceptor dye pairs enhance the scope of 
FRET analysis particularly in biological applications. In this study we 
have explored the energy transfer between CdSe QD (480 nm) as 
donor and F27 dye as a acceptor. The results clearly illustrate the 
dependence of FRET efficiency on spectral overlap as depicted in 
(Fig. 1) and demonstrated that the wavelength dependent energy 
transfer rate matches the dye acceptor absorption spectrum, as 
predicted by Förster formalism. These spectral dependencies of the 
rate of energy transfer are expected to extend to other mechanisms of 
energy transfer from QDs, such as electron transfer and metallic 
nanoparticles quenching [Yun et al., 2005]. 
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Table 1. FRET parameters obtained from steady-state and time-resolved measurements 
 

 

System J( ) 
(M-1cm-1nm4 x 10-14) 

R0 (Å) r (Å) 1τ (ns) 2τ  (ns) 3τ  (ns) A1 A2 A3 
Average <τ> 

 1 1 2 2 3 3A A A    (ns) 

CdSe 480    1.07 8.20 60.12 0.03 0.09 0.88 53.67 
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* A1, A2, A3 are normalized amplitude components 
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