

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 08, pp.19564-19566, August, 2015

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SUSCEPTIBILITY STATUS OF PHLEBOTOMUS ARGENTIPES TO DDT AND DELTAMENTRIN IN A FOCUS OF CUTANEOUS LEISHMANIASIS IN KANI TRIBES SETTLEMENT OF THE WESTERN **GHATS IN KERALA, INDIA**

Selvakumar, M. and *Srinivasan, R.

Vector Control Research Centre (Indian Council of Medical Research), Pondicherry 605006, India

ARTICLE INFO ABSTRACT Leishmaniases are one of the neglected tropical diseases in several countries. In India, recently, Article History: cutaneous leishmaniasis cases were recorded from the tribal settlements of Western Ghats, Received 18th May, 2015 Thiruvananthapuram district, Kerala. To provide a rational framework for selecting an appropriate Received in revised form insecticide for implementing intervention measure, susceptibility of sand flies of this region to DDT 24th June, 2015 Accepted 06th July, 2015 and Deltamenthrin was assessed. A total of 720 sandflies, comprising Phlebotomus argentipes Published online 31st August, 2015

Key words:

Western Ghats, Tribal settlements, Sandfly, Susceptibility, DDT.

(70.6%), Sergentomyia bagdhadis (14.4%), Se. zeylonica (8.2%), P. sintoni (3.6%) and Se. babu (3.2%) were exposed for susceptibility. The corrected mortality for field collected P. argentipes population with DDT as well as Deltamenthrin at diagnostic concentrations was 100% after 24 hr of exposure. P. argentipes and other sand flies were found to be susceptibility to both DDT and Deltamenthrin. Hence, DDT, which is the cheapest insecticide, is one of the options that could be effectively used as residual spraying to prevent further transmission, in the new CL focus.

Copyright © 2015 Selvakumar and Srinivasan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Selvakumar, M. and Srinivasan, R., 2015. "Susceptibility status of Phlebotomus argentipes to DDT and Deltamentrin in a focus of Cutaneous leishmaniasis in Kani tribes settlement of the western Ghats in Kerala, India", International Journal of Current Research, 7, (8), 19564-19566.

INTRODUCTION

The Sixtieth World Health Assembly, in its resolution, recognized leishmaniases as a neglected tropical disease (WHO, 2000). Leishmaniases occur in three form viz., visceral, cutaneous and muco-cutaneous leishmaniases. Visceral leishmaniasis (VL), also known as kala-azar is fatal, if left untreated. It is highly endemic in the Indian subcontinent and in East Africa. An estimated 200 000 to 400 000 new cases of VL occur worldwide each year. Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis and about 95% of CL cases occur in the Americas, the Mediterranean basin, and the Middle East and Central Asia. An estimated 0.7 million to 1.3 million new cases occur worldwide annually (Alvar, 2012). In India, VL confined to Bihar (Prasad, 1987), West Bengal (Addy and Nandy, 1992), Jharkhand and Uttar Pradesh (Rao et al., 1992), is scattering to adjoining states like Gujarat and Madhya Pradesh (Dey et al., 2007); on the other hand, CL restricted to hot dry north western region, Thar Desert of Rajasthan (Mohan and Suri, 1975) is emerging in Himachal Pradesh (Sharma et al., 2003), and Kerala (Muhammed et al., 1990; Bora et al., 1996). In India, DDT is being used for the control of sandfly vectors in VL endemic areas. However, there are reports, indicating that the leishmaniasis vector,

*Corresponding author: Srinivasan, R. Vector Control Research Centre (Indian Council of Medical Research), Pondicherry 605006, India

P. argentipes has developed resistance to DDT in a few districts of Bihar (Kisore et al., 2004; Singh et al., 2001; Mukhopadhyay et al, 2001). Despite, in VL endemic state in India, current vector control programme focusing on residual spraving of sand fly infested dwellings with DDT showed considerable reduction in vector density (Kumar et al., 2015). Recently, CL cases were recorded from the tribal settlements of Western Ghats, Thiruvananthapuram district, Kerala (Simi et al., 2010; VCRC, 2012). To provide a rational framework for selecting an appropriate insecticide for implementing intervention measure and to establish baseline information, susceptibility of sand flies to DDT and Deltamenthrin was assessed, following standard WHO testing procedure.

MATERIALS AND METHODS

The study was conducted in the Kani tribe settlements (08°37'49.7" North latitude-077°11'29.7" East longitude; 08°36'51.2" North latitude 077°09'54.9" East longitude; with altitude, ranging from 267 to 2425 ft.). The settlements (n=28) were scattered on the southern part of the Western Ghats, montane rain forests, Thiruvananthapuram district, Kerala. Majority of the Kani tribes inhabited in mud walled huts (76.2%), while the remaining in houses made of brick and cement plastered walls, with re-in-forced concrete cement roof (23.8%).

19565 Selvakumar, M. and Srinivasan, R., Susceptibility status of Phlebotomus argentipes to DDT and Deltamentrin in a focus of Cutaneous leishmaniasis in Kani tribes settlement of the western Ghats in Kerala, India

Sandflies found resting on walls in human dwellings, treeholes and tree-buttresses, rock holes and rodent burrows were collected using oral and mechanical aspirators, during the period from November 2013 to January 2014, between 10 00 and 12 00 hr. Specimens collected were transferred to 15x15x15cm cloth cage and fed on 10% glucose solution, soaked in cotton wool and brought to the laboratory. Healthy sandfly females with mixed abdominal stages viz., unfed, full fed and half gravid were used for assessing susceptibility to DDT and Deltamenthrin. Both DDT and Deltamenthrin impregnated and control papers were obtained from the Vector Control Research Unit, Universiti Sains, Malaysia (WHO collaborative Centre). DDT discriminating dosage, established by the WHO, for the genus Phlebotomus is 4/1 (exposition to 4% DDT impregnated paper for 1 hr) (WHO, 1981). However, no standardized discriminating concentrations or time of exposure to Deltamenthrin was given for sandflies by the WHO, as in the case for malaria vectors. The discriminating concentration ascertained by earlier works for Deltamenthrin was 0.05/1 (exposition to 0.05% Deltamenthrin impregnated paper for 1 hr) (Aboul et al., 1993; Tetreault et al., 2001; Alexander et al., 2009). Therefore, these diagnostic dosages of DDT and Deltamenthrin were used to assess insecticide susceptibility of sandflies in this study.

Standard WHO testing procedures were applied to assess the insecticide resistance/ susceptibility, using the test-kit tubes (WHO, 1981 and 1998). In each test, four replicates, with 20 sandflies (unidentified) were performed. Two sets of control tests were also performed, using the corresponding control papers. Sandflies were held in the test-kit tubes for 60 min. After one hour exposure, sandflies were transferred to the observation tube and kept for 24 hours, under ambient conditions of temperature $(25\pm2^{\circ}C)$ and relative humidity (65±10%) and maintained on 10% glucose solution, soaked in cotton wool. After 24 hour of observation, alive and dead sandflies, in each of the test-kit tube were counted and recorded. Tests were repeated 3 times with both DDT and Deltamenthrin. Sandfly specimens exposed for the bioassay were identified to species, using the standard key (Lewis, 1978). Mortality rate for sandflies was corrected according to the result of control test using the Abbott's formula (Abbott, 1925).

RESULTS AND DISCUSSION

A total of 720 sandflies comprising *Phlebotomus argentipes* (70.6%), *Sergentomyia bagdhadis* (14.4%), *Sergentomyia zeylonica* (8.2%), *Phlebotomus sintoni* (3.6%) and *Sergentomyia babu* (3.2%) were exposed for susceptibility.

The number of female sandflies exposed to test and control batches and mortality observed after 24 hr exposure were given in Table 1. The number of *P. argentipes* females exposed to DDT (4%) and Deltamenthrin (0.05%) impregnated papers were 158 and 172 respectively, as this species was abundant in the total collection. Sandfly females (n=120) were also exposed to respective control papers. The corrected mortality for field collected *P. argentipes* population with DDT as well as Deltamenthrin at diagnostic concentrations was 100% after 24 hr of exposure. The other species tested are though in small number and found to be susceptible to 4% DDT and 0.05% Deltamenthrin.

Suppression of sandfly population mainly relies on adult control. Although, DDT is being used to control sandflies in kala-azar control programme in India, particularly in Bihar, there are a few reports (Mukhopadhyay et al., 1992; Kumar et al., 2009), which indicate that P. argentipes has developed resistance to this insecticide. However, there was no coordinated effort to monitor resistance to insecticides. In a recent review, Ostyn et al. (2008) published susceptibility status of P. argentipes to DDT in the Indian subcontinent. The results of this review showed that DDT resistance has been reported in India since early 1990s. Singh et al. (2001) reported that P. argentipes was resistant to DDT in villages of Vaishali dt., in Bihar, in line with findings reported from Samstipur dt. in the same state (Kumar et al., 2009). Similarly, Kishore *et al.* (2004) have also reported that *P. argentipes* has developed resistance to DDT, in few districts of Bihar. Despite, in VL endemic state in India, DDT continued to be the choice of insecticide and the vector density showed considerable reduction after the spray (Dinesh et al., 2010). Nevertheless, for effective control, continued effort to monitor the sandfly vector resistance is essential to achieve the desired result. The CL cases are emerging in southern parts Western Ghats of Kerala (Simi et al., 2010) and Himachal Pradesh in northern region (Sharma et al., 2003). Although the morbidity associated with CL is not significant, the disfigurement and resulting social stigmatization may cause or precipitate psychological disorders, along with restricting social participation of the individuals affected by the disease. Thus, CL, like other disfiguring diseases, affects the psychological, social, and economic well-being of affected individuals (Masoom Kassi et al., 2008). Hence, the control of CL vector is also essential. Indigenous transmission of CL cases has been established in the Kani tribal belt, as the affected individuals have no history of movement outside the settlement area for past 2-3 years¹². P. argentipes and other sandflies collected from in and around human dwellings of the Kani tribes were found to be susceptibility to both DDT and Deltamenthrin.

Table 1. Susceptibility of sandflies to DDT (4%) and Deltamenthrin (0.05%) impregnated papers

Sl. No.	Species tested	Insecticide used %	No. exposed in treated replicates	No. Dead in treated replicates after 24 hr exposure	No. exposed control	No. deadin control after 24 hr exposure	% corrected mortality
1	P. argentipes	DDT 4%	158	158	74	2	100
2	P. sintoni	DDT 4%	8	8	8	0	100
3	S. babu	DDT 4%	3	3	4	0	100
4	S. bagdhadis	DDT 4%	31	31	22	1	100
5	S. zeylonica	DDT 4%	40	40	12	0	100
6	P. argentipes	Deltamenthrin 0.05%	172	172	104	1	100
7	P. sintoni	Deltamenthrin 0.05%	10	10	0	0	100
8	S. babu	Deltamenthrin 0.05%	13	13	3	0	100
9	S. bagdhadis	Deltamenthrin 0.05%	45	45	6	0	100
10	S. zeylonica	Deltamenthrin 0.05%	Not done	Not done	7	0	Not done

Hence, DDT, which is the cheapest insecticide, is one of the options that could be effectively used as residual spraying to prevent further transmission, in the new CL

Acknowledgement

Authors are grateful to Dr. P. Jambulingam, Director, Vector Control Research Centre, Pondicherry for his encouragement and critical review of the manuscript and to Dr. K. Gunasekaran, Scientist F, VCRC for providing facilities to conduct susceptibility test.

REFERENCES

- Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. *J Econ Entomol.*, 18: 265-267.
- Aboul Ela, R. G., Morsy TA, El Gosamy BMR, Ragheb DA. 1993. The susceptibility of the Egyptian *Phlebotomus papatasi* to five Insecticides. *J Egypt Soc Parasitol.*, 23(1): 69-94.
- Addy, M., Nandy, A. 1992. Ten years of kala-azar in west Bengal, Part I. Did post-kala-azar dermal leishmaniasis initiate the outbreak in 24-Parganas? Bull World Health Organ., 70(3): 341-346.
- Alexander, B., Barros, V. C., De Souza, S. F., Barros, S. S., Teodoro, L. P., Soares, Z. R., Gontijo, N. F., Reithinger, R. 2009. Susceptibility to chemical insecticides of two Brazilian populations of the visceral leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae). Trop Med Int Health., 14: 1272–1277.
- Alvar, J., Ve'lez, I. D., Bern, C., Herrero, M., Desjeux, P. 2012. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE; 7(5): e35671. oi:10.1371/journal.pone.0035671.
- Bora, D., Khera, A. K., Mittal, V., Kaul, S. M., Sharma, R. S., Veena Mittal, 1996. New focus of cutaneous leishmaniasis in India: preliminary report. *Indian J Dermatol Venereol Leprol.*, 62(1): 19-21.
- Dey, A., Sharma, U., Singh, S. 2007. First case of visceral leishmaniasis from Central India. Am. J Trop Med Hyg., 77(1): 95-98
- Dinesh, D. S., Das, L. M., Albert Picado, Lalita Roy, Suman Rijal, Singh, S. P., Pradeep Das, Marieen Boelaert, Marc Coosemans. 2010. Insecticide susceptibility of Phlebotomus argentipes in visceral leishmaniasis endemic district in Indai and Nepal. Negl Trop Dis., 4(10): e859.
- Kishore, K., Kumar, V., Kesari, S., Bhattacharya, S. K., Das, P. 2004. Susceptibility of Phlebotomus argentipes against DDT in endemic Districts of north Bihar, India. *J Commun Dis.*, 36(1): 41-44.
- Kumar, V., Kesar, S., Dinesh, D. S., Tiwari, A. K., Kumar, A. J., Kumar, R., Singh, V. P., Das, P. 2009. A report on the indoor residual spraying (IRS) in the control of Phlebotomus argentipes, the vector of visceral leishmaniasis in Bihar (India): an initiative towards total elimination targeting 2015 (series-1). *J Vector-Bore Dis.*, 46(3): 225-229.
- Lewis, D. J. 1978. Phlebotomine sandflies (Diptera. Psychodidae) of the Oriental Region. Bull Br Mus (Nat Hist) Entomol Ser., 37(6): 217–343.

- Masoom Kassi, Mahwash Kassi, Abaseen Khan Afghan, Rabeea Rehman, and Pashtoon Murtaza Kasi. 2008. Marring Leishmaniasis: The Stigmatization and the Impact of Cutaneous Leishmaniasis in Pakistan and Afghanistan. Negl Trop Dis., 2(10): e259. Published online Oct 29, 2008. doi: 10.1371/journal.pntd.0000259
- Mohan, K., Suri, J. C. 1975. Studies on cutaneous leishmaniasis in India V. Isolation of Leihmania tropica from gerbils, sandflies and human. *J Commun Dis.*, 7: 353 -357.
- Muhammed, K., Narayani, K., Aravindan, K. P. 1990. Indigenous cutaneous leishmaniasis. *Indian J Dermatol Venereol Leprol.*, 56:228 -229.
- Mukhopadhyay, A. K., Sexena, N. B. L. K., Narasimhan, M. V. V. L. 1992. Susceptibility status of Phlebotomus argentipes to DDT in some Kala-azar endemic districts of Bihar, India. Geneva, World Health Organization (unpublished document WHO/CTD/VBC/ 92.995).
- Ostyn, B., Vanlerberghe, V., Picado, A., Dinesh, D. S., Sundar, S., Chappuis, F. 2008. Vector control by insecticide-treated nets in the fight against visceral leishmaniasis in the Indian subcontinent, what is the evidence? Trop Med Int Health., 13: 1073-1085.
- Prasad LSN. 1987. Kala azar in Bihar. *Indian J Pediatric.*, 54: 103-110.
- Rao, J. S., Rahman, S. J., Singh, J., Singh, S. K. 1992. Kalaazar in Ballia district, Uttar Pradesh. J Commun Dis., 24(2): 16-20.
- Sharma, R. C., Mahajan, V. K., Sharma, N. L., Sharma, A. 2003. A new focus of cutaneous leishmaniasis in Himachal Pradesh (India). *Indian J Dermatol Venereol Leprol.*, 69: 170-172.
- Simi, S. M., Anish, T. S., Jyothi, R., Vijayakumar, K., Rekha Rachel Philip and Nimmy Paul. 2010. Searching for cutaneous leishmaniasis in tribal from Kerala India. J Global Infec Dis., 2(2): 95-100.
- Singh, R., Das, R. K., Sharma, S. K. 2001. Resistance of sandflies to DDT in Kala-azar endemic districts of Bihar, India. Bull World Health Org., 79(8): 793.
- Tetreault, G. E., Zayed, A. E., Hanafi, H. A., Beavers, G. M., Zeichner, B. C. D. J. 2001. Susceptibility of sandflies to selected insecticides in North Africa and the *Middle East. J Am Mosq Control Assoc.*, 17(1): 23–27.
- VCRC (Vector Control Research Centre). 2012. Annual report, pp 67.
- WHO (World Health Organization) 1981. Instructions for determining the susceptibility or resistance of adult blackflies, sandflies and biting midges to insecticides: WHO/VBC/81.810.
- WHO (World Health Organization). 1998. Test procedures for insecticide resistance monitoring in malaria vectors, bioefficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12.
- WHO (World Health Organization). 2000. Report on Global Surveillance of Epidemic-prone Infectious Diseases – Leishmaniasis. *Epidemic and Pandemic Alert and Response (EPR)* Available from: http://www.who.int/entity/ csr/resources/publications/CSR_ISR_2000_1leish/en/ index.html.