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The paper proposes a new method for solving integral
linear viscoelastic shells built on the basis of the operational calculus for arbitrary hereditary functions 
at a low viscosity. The solution is built as a
problem, obtained by averaging method and it is shown that at low impacts of amplitude true 
fluctuations remain finite. Fundamental results that at low frequencies the effect of subsequent terms 
slightly and they increase with increasing frequency. It is shown that in the particular case of certain 
values 
amplitude of the first term and the amplitude of all th
exponentially, and the phases are shifted.
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INTRODUCTION 
 

In the design of modern buildings of different type and values 
for various materials are used in the form of a cylindrical shell. 
Therefore, only on the basis of the dynamic viscoelasticity of 
oscillations can be fully ascertaining the optimum size and 
operational conditions of work con-struction with the 
rheological properties of the material. Among the tasks of 
dynamic viscoelasticity should highlight the problem of 
vibrations of viscoelastic systems and non
problems. In solving the problem of oscillations of viscoelastic 
systems (Larionov, 1969; Matyash, 1971 and 
has been applied well-known method of averaging, which was 
further developed in the works (Brilla, 1997; 
Kim and Youn, 2001). It should be noted that in addressing 
problems of non-stationary dynamic analytical view 
relaxation of the nuclei is not specified. This solutions are built 
with the help of some approximate methods, which are the 
final decision to the solution of integral-differential equations 
of free and forced vibrations of viscoelastic systems 
implemented by various numerical methods (Ilyasov, 2007; 
Gurtin Morton and Hrusa William, 1988; Kim and Youn, 2001 
and Park and Schapery, 1997). A particularly complex and 
important is to make a deep analysis and build a more accurate 
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ARTICLE INFO                                         ABSTRACT 

The paper proposes a new method for solving integral-differential equation of forced oscillations of 
linear viscoelastic shells built on the basis of the operational calculus for arbitrary hereditary functions 
at a low viscosity. The solution is built as a series, the first member of which is the solution of this 
problem, obtained by averaging method and it is shown that at low impacts of amplitude true 
fluctuations remain finite. Fundamental results that at low frequencies the effect of subsequent terms 

ightly and they increase with increasing frequency. It is shown that in the particular case of certain 
values influence the amplitude of the oscillation frequency of the second term is 20
amplitude of the first term and the amplitude of all the members of the series over time fit 
exponentially, and the phases are shifted. 
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In the design of modern buildings of different type and values 
various materials are used in the form of a cylindrical shell. 

Therefore, only on the basis of the dynamic viscoelasticity of 
oscillations can be fully ascertaining the optimum size and 

struction with the 
erties of the material. Among the tasks of 

dynamic viscoelasticity should highlight the problem of 
vibrations of viscoelastic systems and non-stationary wave 
problems. In solving the problem of oscillations of viscoelastic 

1971 and Ilyasov, 2007) 
known method of averaging, which was 

Brilla, 1997; Abdou, 2002 and 
). It should be noted that in addressing 

stationary dynamic analytical view of the 
relaxation of the nuclei is not specified. This solutions are built 
with the help of some approximate methods, which are the 

differential equations 
of free and forced vibrations of viscoelastic systems 

emented by various numerical methods (Ilyasov, 2007; 
Gurtin Morton and Hrusa William, 1988; Kim and Youn, 2001 

). A particularly complex and 
important is to make a deep analysis and build a more accurate  
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solutions of integro-differential equation of oscillations of 
viscoelastic systems and use them to explore the effect of 
different initial and boundary conditions, and rheological 
properties of heterogeneous materials, etc. on the wave field 
(Eshmatov and Khodjaev, 2007; 
and Babajanova, 2014). To study these issues the focus of this 
work. 
 

MATERIALS AND METHODS
 
For the analytical solution of the problem using mathematical 
methods of dynamic theory of linear and nonlinear 
viscoelastic, the theory of partial differential equations of 
hyperbolic type, the theory of integral equations of the second 
type of Voltaire, operational calculus and the method of 
separation of variables. Using these methods, the generalized 
mathematical model and the development of methods for 
solving the problems of the free movement of hereditary 
solids, with which it will be possible to describe the behavior 
of viscoelastic systems with arbitrary rheology by intense 
external loading. This paper investigates 
of a viscoelastic shell for any hereditary nuclei at low viscosity 
by using the integral Laplace transform. As is known, the 
equation of forced oscillations of viscoelastic shells obtained 
from the equation of oscillations of elasti
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differential equation of forced oscillations of 
linear viscoelastic shells built on the basis of the operational calculus for arbitrary hereditary functions 

series, the first member of which is the solution of this 
problem, obtained by averaging method and it is shown that at low impacts of amplitude true 
fluctuations remain finite. Fundamental results that at low frequencies the effect of subsequent terms 

ightly and they increase with increasing frequency. It is shown that in the particular case of certain 
influence the amplitude of the oscillation frequency of the second term is 20-25% of the 

e members of the series over time fit 
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differential equation of oscillations of 
viscoelastic systems and use them to explore the effect of 
different initial and boundary conditions, and rheological 
properties of heterogeneous materials, etc. on the wave field 

Khodjaev, 2007; Brilla, 1997 and Kurbanov 
). To study these issues the focus of this 

MATERIALS AND METHODS 

For the analytical solution of the problem using mathematical 
methods of dynamic theory of linear and nonlinear 

tic, the theory of partial differential equations of 
hyperbolic type, the theory of integral equations of the second 
type of Voltaire, operational calculus and the method of 

Using these methods, the generalized 
and the development of methods for 

solving the problems of the free movement of hereditary 
solids, with which it will be possible to describe the behavior 
of viscoelastic systems with arbitrary rheology by intense 
external loading. This paper investigates the forced oscillations 
of a viscoelastic shell for any hereditary nuclei at low viscosity 
by using the integral Laplace transform. As is known, the 
equation of forced oscillations of viscoelastic shells obtained 
from the equation of oscillations of elastic shells (2,4,12). 
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replacement 21,uu  and 3u  by       .,, 321 uJuJuJ  

Thus the equation of forced oscillations of viscoelastic shells 
will be in the form: 
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where the operator  zJ  is given by equation 

       2-tГ
0

 dzzzJ
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 tF ,, 21   the external force, 

  the material density,  

h  the shell thickness,  

ku transformation. 

 
Note that the equation (1) describing the oscillations of a 
viscoelastic shell should be connected the initial and boundary 
conditions. 
 
The boundary conditions can be defined in different ways and 
are used to determine the eigenvalues and eigenfunctions, 
which is not difficult, and the initial conditions take the form: 
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In many practical problems investigation of oscillations of 
viscoelastic systems reduces to the solution of integral-
differential equations depending only on time, which are 
obtained from the equations (1) or by separation of variables or 
Bubnov-Galerkin method. 
 
Therefore, introducing the solution of equation (1) in the form 
of a series 
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from this equation for determining the  tTm  we obtain: 
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Therefore that solution of the problem is mathematically 
reduced to solving integral-differential equation (4) with the 
following initial conditions: 
 

  0TtT        at   0t  

  0TtT         at    0t                                    (5) 

 
Using the integral Laplace transform in time t  to the equation 
(4) with regard to the conditions (5) and dropping indexes for 
simply of  record we obtain (6,7,12). 
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where s the parameter of the Laplace transform. The over 
bar denotes the Laplace transform of similar functions. 
 
Let's introduce the following notation: 
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Let us find the originals of these functions. 
 
It is known that (4,8,10) at small values of the time parameter 
s  is large enough, because the materials in question with 

instant elasticity image of relaxation kernel  s  with 

increasing s  approaches to zero. At other times we use the 
inequality 
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established by A.A. Ilyuschin (2,6) and is valid for all values 
of time .t  
 
The validity of this inequality is obtained from the physical 
and mechanical nature of  medium y  hard composites 

materials viscous resistance are small compared with the main 

elastic. Then the value  s  in the specified intervals 

will be small. This shows that inequality 
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will be true for any time t  (Abdou, 2002 and Park and 
Schapery, 1997). 
 
With these assumptions the first term on the right-hand side of 
equation (6) can be expanded in a series: 
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For calculate the number of the original present in the form 
(10,14):  
 

 

   
 8

2

00

sBpsA

TTss
k







  

 
where 

 
2

2
2

2

1
1

2

1

















 cs ppssA   

     22

4
cscs

p

s
ssB 


   

     dpdp cs cos;sin
00



 

 
Note that if the denominator of the equation (8) neglect the 

term  ,2 sBp  we obtain the solution of this problem the 

image obtained by the averaging method (Larionov, 1969; 
Matyash, 1971 and Badalov et al., 1987). 
 
If the variable t  is large enough then the value 

 sBp2  is small  

 
Therefore, for all values of parameter s   and consequently  

time t   can be shown validity of the inequality 
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Then the function  s  we can represented as: 
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Original first term of this series is defined as 
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This formula is the solution, the first obtained by the averaging 
method for integro-differential equation of free oscillations of 
viscoelastic systems in (Matyash, 1971; Abdou and Salama, 
2004 and Kurbanov and Babajanova, 2014). 
 
Following the approach of the series (9) is determined by the 
convolution of functions (Govindjee and Reese, 1997 and 
Kurbanov and Babajanova, 2014). 
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Analogously we can find the next approximation of a function 
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Let's expand the denominator in the following order: 
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Hence, we find: 
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Then for  s given: 
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Therefore, to a first approximation solutions assigned  the 
problem we obtain: 
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To investigate the obtained solutions assume that 
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Thus, if the external impact is small, the true amplitude 
oscillations remain finite and there is amplitude damping of 
free oscillations of by the exponential law and a frequency 
shift. 
 

DISCUSSION 
 
The purpose of work is to construct a generalized 
mathematical model and the development of new methods of 
solving integral-differential equation fluctuations viscoelastic 
systems with arbitrary rheology. With the help of the integral 
Laplace transform solved integral-differential equation of 
forced vibrations of linear viscoelastic systems for arbitrary 
kernel. The solution in the form of a series shown that at low 
frequencies the effect of the subsequent terms of the series to 
address a little with increasing frequency, they are increasing. 
Analysis of the decisions shows that the inclusion of the 
following terms of the series improves the accuracy of the 
solution, and the amplitudes of all members of the series over 
time decreases exponentially, and the phases are shifted. The 
results can be used directly in the solution of complex 
applications in engineering calculations on the strength and 
durability of the operational reliability of the viscoelastic 
elements technology. 
 
Conclusions 
 
Solved the problem of forced vibrations of linear viscoelastic 
shells for any kernel at low viscosity material. The solution is 
built as a series, and shows that the first term of this series is a 
solution to this problem, obtained by averaging, and taking 
into account subsequent amendments give the number of the 
members of these decisions. The resulting solution is 
investigated for specific actions and obtained that at small 
amplitudes of the true impacts fluctuations remain finite and 
there is the damping of the amplitude of free oscillations 
exponentially, and the phases are shifted. 
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