RESEARCH ARTICLE

ASSESSING HIGH SCHOOL STUDENTS' MATHEMATICS COMPETENCY: CONSTRUCT SOME NEW RESULTS ON TRIANGLE

*Nguyen Huu Hau

Hong Duc University, Thanh Hoa city

ARTICLE INFO

Article History:

Received $18^{\text {th }}$ April, 2015
Received in revised form $23^{\text {rd }}$ May, 2015
Accepted $19^{\text {th }}$ June, 2015
Published online $28^{\text {th }}$ July, 2015

Key words:

Students' assessment competency,
Mathematics teaching methods.

Abstract

In this paper, we help grade $10^{\text {th }}$ Vietnamese students to construct some new results on triangle. Then we process to assess their mathematics competency.

Copyright © 2015 Nguyen Huи Hau. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Nguyen Huu Hau, 2015. "Assessing high school students' mathematics competency: construct some new results on triangle", International Journal of Current Research, 7, (6), 17789-17793.

INTRODUCTION

How do you know if your students are achieving your specific learning goals for a course? Assessment is essential not only to guide the development of individual students but also to monitor and continuously improve the quality of programs. Competency evaluations of high school students provide excellent feedback about student satisfaction and teaching. In this paper, we use some examples in references (Nhi et al., 2013; 2015; 2012) to teaching the sudents.

Mathematics competency assessment of high school students in Vietnam

Level 1. The teachers assess students' competency of recalling knowledge

The students recall some formulas and apply them on the edges of a triangle.
In this paper, We denote: Given a triangles $A B C$ with the edges $a=B C, b=C A, c=A B$. Denoted respectively O, R is the center and radius of circumcircle of triangle $A B C, I, r$ are the centers and radius of incircle of circumcircle of triangle $A B C$, J_{a}, J_{b}, J_{c} are the centers of three escribed circles of triangle $A B C$ have three center respectively being r_{a}, r_{b}, r_{c}. Denoted h_{a}, h_{b}, h_{c} are the lengths of altitudes respectively sides a, b, c of triangle $A B C$. Set $S=S_{A B C}, 2 p=a+b+c$.

Example 1 With the above denoted, we have a, b, c are three solutions of the cubic polynomial $x^{3}-2 p x^{2}+\left(p^{2}+r^{2}+4 R r\right) x-4 R r p$.

Proof. The students given some formulas then changing them.

[^0]From $\tan \frac{A}{2}=\frac{r}{p-a}$ and $a=2 R \sin A$, we obtain $a=2 R \frac{2 \tan (A / 2)}{1+\tan ^{2}(A / 2)}$.
Thus, we obtain $a=4 R r \frac{p-a}{r^{2}+(p-a)^{2}}$ or $a^{3}-2 p a^{2}+\left(p^{2}+r^{2}+4 R r\right) a-4 R r p=0$.
Similarly, we have $b^{3}-2 p b^{2}+\left(p^{2}+r^{2}+4 R r\right) b-4 R r p=0$
and $c^{3}-2 p c^{2}+\left(p^{2}+r^{2}+4 R r\right) c-4 R r p=0$.
Therefore, a, b and c are three solutions of the equation
$x^{3}-2 p x^{2}+\left(p^{2}+r^{2}+4 R r\right) x-4 R r p=0$

Level 2. The teachers assess students' competency at higher level as they give hypothesis and prove them.

From the example 1, the students construction new results.
Example 2 With the above denoted.
i) Construction the relation of h_{a}, h_{b}, h_{c} with the cubic polynomial
ii) Construction the relation of r_{a}, r_{b}, r_{c} with the cubic polynomial

Proof.
i) Using results example 1 we have a, b and c are the solutions of the equation $x^{3}-2 p x^{2}+\left(p^{2}+r^{2}+4 R r\right) x-4 \operatorname{Rrp}=0$ and $S=p r$, we deduce that $\frac{2 S}{a}, \frac{2 S}{b}$ and $\frac{2 S}{c}$ are the solutions of the equation
$2 S^{2}-\frac{2 S^{2}}{r} y+\frac{\frac{S^{2}}{r^{2}}+4 R r+r^{2}}{2} y^{2}-R y^{3}=0$.
Hence, h_{a}, h_{b}, h_{c} are three solutions of the equation $x^{3}-\frac{S^{2}+4 R r^{3}+r^{4}}{2 R r^{2}} x^{2}+\frac{2 S^{2}}{R r} x-\frac{2 S^{2}}{R}=0$.
ii) Because $\tan \frac{A}{2}=\frac{r_{a}}{p}$ and $a=2 R \frac{2 \tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}$, we have $a=4 R r_{a} \frac{p}{r_{a}^{2}+p^{2}}$. Otherwise $S=r_{a}(p-a)=r p$, we deduce that $a=\frac{r_{a} p-S}{r_{a}}=\frac{\left(r_{a}-r\right) p}{r_{a}}$. Therefore,
$4 R r_{a} \frac{p}{r_{a}^{2}+p^{2}}=\frac{\left(r_{a}-r\right) p}{r_{a}} \operatorname{namely}\left(r_{a}-r\right)\left(r_{a}^{2}+p^{2}\right)=4 R r_{a}^{2}$
that means r_{a} is a root of the equation $x^{3}-(4 R+r) x^{2}+p^{2} x-p^{2} r=0$. Similarly, r_{b} and r_{c} are also solutions of the equation
$x^{3}-(4 R+r) x^{2}+p^{2} x-p^{2} r=0$.
At the end of Level 2, The students understand knowledge and they give theorem 1.
Theorem 1 [4] With the above denoted, the following holds
i) a, b, c are three solutions of the cubic polynomial $x^{3}-2 p x^{2}+\left(p^{2}+r^{2}+4 R r\right) x-4 R r p$.
ii) h_{a}, h_{b}, h_{c} are three solutions of the cubic polynomial
$x^{3}-\frac{S^{2}+4 R r^{3}+r^{4}}{2 R r^{2}} x^{2}+\frac{2 S^{2}}{R r} x-\frac{2 S^{2}}{R}$.
iii) r_{a}, r_{b}, r_{c} are three solutions of the cubic polynomial
$x^{3}-(4 R+r) x^{2}+p^{2} x-p^{2} r$.

Level 3. The teachers assess students' competency of mobilizing knowledge and creative thinking

The students use theorem 1 to prove some equalities and also present some new equalities that seem to be difficult if they are built from geometric properties.

Example 3 From theorem 1, construction new results.
i) From (3) of theorem 1, we have $x^{3}-(4 R+r) x^{2}+p^{2} x-p^{2} r=\left(x-r_{a}\right)\left(x-r_{b}\right)\left(x-r_{c}\right)$.

Then, choosing $x=r$, we have $\left(r_{a}-r\right)\left(r_{b}-r\right)\left(r_{c}-r\right)=4 R r^{2}$
Namely $\left(\frac{r_{a}}{r}-1\right)\left(\frac{r_{b}}{r}-1\right)\left(\frac{r_{c}}{r}-1\right)=4 \frac{R}{r}$.
ii) Because r_{a}, r_{b}, r_{c} are three solutions of the equation (1), we have
$\frac{1}{x-r_{a}}+\frac{1}{x-r_{b}}+\frac{1}{x-r_{c}}=\frac{3 x^{2}-2(4 R+r) x+p^{2}}{x^{3}-(4 R+r) x^{2}+p^{2} x-p^{2} r}$.
Choosing $x=r$, we obtain $\frac{1}{r_{a}-r}+\frac{1}{r_{b}-r}+\frac{1}{r_{c}-r}=\frac{r^{2}-8 R r+p^{2}}{4 R r^{2}}$. So
$\frac{4 R}{r_{a}-r}+\frac{4 R}{r_{b}-r}+\frac{4 R}{r_{c}-r}=1-8 \frac{R}{r}+\frac{r_{a} r_{b} r_{c}}{r^{3}}$.
iii) Applying formulas 2, 3 of theorem 1 and Vieta's formula, we have
$\frac{\left(r_{a}-r_{b}\right)^{2}}{r_{a} r_{b}}+\frac{\left(r_{b}-r_{c}\right)^{2}}{r_{b} r_{c}}+\frac{\left(r_{c}-r_{a}\right)^{2}}{r_{c} r_{a}}=\frac{(4 R+r) p^{2}}{p^{2} r}-9=\frac{4 R}{r}-8$.
Thus, we get Proposition 1
Proposition 1. With the above denoted, we have
i) $\left(\frac{r_{a}}{r}-1\right)\left(\frac{r_{b}}{r}-1\right)\left(\frac{r_{c}}{r}-1\right)=4 \frac{R}{r}$.
ii) $\frac{4 R}{r_{a}-r}+\frac{4 R}{r_{b}-r}+\frac{4 R}{r_{c}-r}=1-8 \frac{R}{r}+\frac{r_{a} r_{b} r_{c}}{r^{3}}$.
iii) $\frac{\left(r_{a}-r_{b}\right)^{2}}{r_{a} r_{b}}+\frac{\left(r_{b}-r_{c}\right)^{2}}{r_{b} r_{c}}+\frac{\left(r_{c}-r_{a}\right)^{2}}{r_{c} r_{a}}=\frac{4 R}{r}-8$.

Example 4. Given $A B C$ with the above denoted. Construction the relation of h_{a}, h_{b}, h_{c} and $R, r, r_{a}, r_{b}, r_{c}$.
i) From theorem 1 we have r_{a}, r_{b}, r_{c} are three solutions of the equation
$x^{3}-(4 R+r) x^{2}+p^{2} x-p^{2} r=0$
we deduce that $\frac{1}{r_{a}}, \frac{1}{r_{b}}, \frac{1}{r_{c}}$ are three solutions of the equation
$p^{2} r x^{3}-p^{2} x^{2}+(4 R+r) x-1=0$.
Using Vieta's formula, we have
$\frac{1}{r_{a}^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}=\left(\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}\right)^{2}-2\left(\frac{1}{r_{a}} \frac{1}{r_{b}}+\frac{1}{r_{a}} \frac{1}{r_{c}}+\frac{1}{r_{b}} \frac{1}{r_{c}}\right)=\frac{1}{r^{2}}-2 \frac{4 R+r}{p^{2} r}$.

Otherwise, applying formula (2) of theorem 1 and Vieta's formula, we have
$4\left(\frac{1}{h_{a}^{2}}+\frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}}\right)=\frac{2 p^{2}-2 r^{2}-8 R r}{p^{2} r^{2}}=\frac{2}{r^{2}}-2 \frac{4 R+r}{p^{2} r}$.

Therefore, $4\left(\frac{1}{h_{a}^{2}}+\frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}}\right)=\frac{1}{r_{a}^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}+\frac{1}{r^{2}}$.
ii) Applying theorem 1 and Vieta's formula, we obtain
$h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}=r \frac{2 S^{2}}{R r^{2}}=2 r \frac{p^{2}}{R}=\frac{2 r}{R}\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right)$.
Thus, we get Proposition 2.
Proposition 2. Given $A B C$ with the above denoted. We have
i) $4\left(\frac{1}{h_{a}^{2}}+\frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}}\right)=\frac{1}{r_{a}^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}+\frac{1}{r^{2}}$.
ii) $h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}=\frac{2 r}{R}\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right)$.

At the end of Level 3, students' mathematics competence is good.
Level 4. The teachers assess students' self-deducing skill based on involving knowledge
i) Using result (2) of the theorem 1, we have $h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \geq h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}=\frac{2 S^{2}}{R r}$
deduce that $h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \geq \frac{2 S^{2}}{R r}$. Furthermore $R \geq 2 r$. Thus $h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \geq \frac{4 S^{2}}{R^{2}}$.
ii) In following equation: $y^{3}-\frac{S^{2}+4 R r^{3}+r^{4}}{2 R r^{2}} y^{2}+\frac{2 S^{2}}{R r} y-\frac{2 S^{2}}{R}=\left(y-h_{a}\right)\left(y-h_{b}\right)\left(y-h_{c}\right)$

Let $y=r$ we have $\left(h_{a}-r\right)\left(h_{b}-r\right)\left(h_{c}-r\right)=\frac{S^{2}+2 R r^{3}+r^{4}}{2 R}$
From $R \geq r$ deduce that $\quad \frac{S^{2}+5 r^{4}}{2 R} \leq\left(h_{a}-r\right)\left(h_{b}-r\right)\left(h_{c}-r\right) \leq \frac{S^{2}+5 r^{4}}{4 r}$.
iii) We have

$$
h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}=r \frac{2 S^{2}}{R r^{2}}=2 r \frac{p^{2}}{R}=\frac{2 r}{R}\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right) .
$$

Thus $h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \geq \frac{2 r}{R}\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right)$.
Thus, we get Corollary 1.
Corollary 1. Given triangle $A B C$, we have inequalities:
i) $h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \geq \frac{4 S^{2}}{R^{2}}$.
ii) $\frac{S^{2}+5 r^{4}}{2 R} \leq\left(h_{a}-r\right)\left(h_{b}-r\right)\left(h_{c}-r\right) \leq \frac{S^{2}+5 r^{4}}{4 r}$.
iii) $h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \geq \frac{2 r}{R}\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right)$.

At the end of Level 4, the students are at high level of self-learning.

Conclusion

In vietnam, students' competency assessment is limited. this paper present a method to assess students' mathematical competence in a specific mathematics knowledge. based on the results, teachers and students could improve their teaching and learning.

REFERENCES

Nhi, D.V., Chin, V.D., Dung, D.N., Phuong, P.M.,Tinh, T.T., Tuan, N.A., 2015. Elementary geometry. Information and Communication Publishing House, Vietnam, 2015.
Nhi, D.V., Thang, L.B., 2012. Journal of Science of Hanoi National University of Education, Vol. 57.
Nhi, D.V.,Tinh, T.T., Vi, P.T., Hai, P.D., 2013. Inequality, extremum, system equations. Information and CommunicationPublishing House, Vietnam, 2013.
Rebecca Cartwright, Ken Weiner, Samantha Streamer-Veneruso, 2010. Student Learning Outcomes Assessment Handbook. Montgomery College Montgomery County, Maryland, 2010.
Robert J. Marzano, 2007. The art and science of teaching: a comprehensive framework for effective instruction.

[^0]: *Corresponding author: Nguyen Hии Haи
 Hong Duc University, Thanh Hoa city

