

SUITABLE AND EFFICIENT GRID COMPUTING USING JAVA

Amity University, Noida, U.P.

ARTICLE INFO ABSTRACT

In today’s modern era Grid computing has become a very important research topic within computer
science. Grid Computing is mainly focus on how to coordinate and share the use of diverse
in today‘s distributed environments. The multi
environments introduces some challenging security issues, which include interoperability with
different “hosting environments”, integration with existing sys
relationships among interacting hosting environments. Here we need to know the different technical
approaches to handle these challenging issues. During the recent years, many prominent companies
and research institutes hav
security. The main goal of this paper is to provide an user friendly programming environment for
small and medium sized distributed supercomputing on the heterogeneous grids.

Copyright © 2015 Anil Barnwal. This is an open access article distributed under the Creative Commons Att
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Grid computing (Raksha et al., 2010) is a very interesting
research area in modern era that integrates
geographically-distributed computing resources into a single
powerful system. Now a day’s many applications can
from such integration (Foster et al., 1998, Smarr
Some of the examples are collaborative applications, remote
visualization and the remote use of scientific instruments. Grid
software supports such applications by addressing issues like
resource allocation, fault tolerance, security, and heterogeneity.
Parallel computing on geographically distributed resources,
often called distributed supercomputing, is one important class
of grid computing applications.

Characteristics of grid

Various definitions and characteristics have been
while going through different grid literature sources. Some of
the important characteristics are given below:

Huge Size: A grid’s size may vary from just a few resources to
millions. So as the grid size increases there may be problems
related to potential performance degradation (Somasundaram
et al., 2007).

*Corresponding author: Anil Barnwal,
Amity University, Noida, U.P.-201313, India.

ISSN: 0975-833X

Article History:

Received 25th March, 2015
Received in revised form
21st April, 2015
Accepted 24th May, 2015
Published online 27th June, 2015

Key words:

Grid computing, GT4, OGSA, OGSI,
WSDL, WSRF, Mersenne Prime,
Lucas-Lehmer Test, JNDI.

Citation: Anil Barnwal, 2015. “Suitable and efficient Grid computing using Java
16844-16849.

RESEARCH ARTICLE

SUITABLE AND EFFICIENT GRID COMPUTING USING JAVA

*Anil Barnwal

Amity University, Noida, U.P.-201313, India

ABSTRACT

In today’s modern era Grid computing has become a very important research topic within computer
science. Grid Computing is mainly focus on how to coordinate and share the use of diverse
in today‘s distributed environments. The multi-departmental and dynamic nature of these
environments introduces some challenging security issues, which include interoperability with
different “hosting environments”, integration with existing sys
relationships among interacting hosting environments. Here we need to know the different technical
approaches to handle these challenging issues. During the recent years, many prominent companies
and research institutes have proposed and implemented several architectures for grid and grid
security. The main goal of this paper is to provide an user friendly programming environment for
small and medium sized distributed supercomputing on the heterogeneous grids.

is an open access article distributed under the Creative Commons Attribution License, which
distribution, and reproduction in any medium, provided the original work is properly cited.

2010) is a very interesting
research area in modern era that integrates

distributed computing resources into a single
powerful system. Now a day’s many applications can benefit

98, Smarr et al., 1992).
Some of the examples are collaborative applications, remote
visualization and the remote use of scientific instruments. Grid
software supports such applications by addressing issues like

ty, and heterogeneity.
Parallel computing on geographically distributed resources,
often called distributed supercomputing, is one important class

Various definitions and characteristics have been evolved
while going through different grid literature sources. Some of
the important characteristics are given below:

: A grid’s size may vary from just a few resources to
millions. So as the grid size increases there may be problems

potential performance degradation (Somasundaram

Distribution of resources: A grid’s resources may be
distributed to a number of places.

Heterogeneity: A grid generally hosts hardware and software
resources that can contain data, files, software components or
programs to sensors, scientific instruments, display devices,
personal digital organizers, computers, super
networks (Foster et al., 1998).

 Sharing Of Resources: Resources in a grid generally belong
to many different organizations that allow the users of same as
well as other organization to access them. So non local
resources can thus be used by other applications, promoting
efficiency and reducing costs.

 Involvement of multiple administrations
organization may set up different security and administrative
policies under which their owned resources can be accessed
and used. As a result, the already challenging network secur
problem is complicated even more with the need of taking into
account all different policies.

Reliable and regular access
standard protocols, services, and inter
heterogeneity of the different resourc
scalability. Without such standards, application development
and pervasive use would not be possible.

 Available online at http://www.journalcra.com

International Journal of Current Research

Vol. 7, Issue, 06, pp.16844-16849, June, 2015

 INTERNATIONAL

Suitable and efficient Grid computing using Java”, International Journal of Current Research,

 z

SUITABLE AND EFFICIENT GRID COMPUTING USING JAVA

In today’s modern era Grid computing has become a very important research topic within computer
science. Grid Computing is mainly focus on how to coordinate and share the use of diverse resources

departmental and dynamic nature of these
environments introduces some challenging security issues, which include interoperability with
different “hosting environments”, integration with existing systems and technologies, and trust
relationships among interacting hosting environments. Here we need to know the different technical
approaches to handle these challenging issues. During the recent years, many prominent companies

e proposed and implemented several architectures for grid and grid
security. The main goal of this paper is to provide an user friendly programming environment for
small and medium sized distributed supercomputing on the heterogeneous grids.

ribution License, which permits unrestricted use,

: A grid’s resources may be
distributed to a number of places.

: A grid generally hosts hardware and software
resources that can contain data, files, software components or
programs to sensors, scientific instruments, display devices,
personal digital organizers, computers, super-computers and

: Resources in a grid generally belong
to many different organizations that allow the users of same as
well as other organization to access them. So non local
resources can thus be used by other applications, promoting

Involvement of multiple administrations: Every
organization may set up different security and administrative
policies under which their owned resources can be accessed
and used. As a result, the already challenging network security
problem is complicated even more with the need of taking into

Reliable and regular access: A grid should be built with
standard protocols, services, and inter-faces which hides the
heterogeneity of the different resources while allowing its
scalability. Without such standards, application development
and pervasive use would not be possible.

INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

International Journal of Current Research, 7, (6),

Pervasive access: A grid must grant access to available
resources by adapting to a dynamic environment in which
resource failure is common place. This does not imply that
resources are everywhere or universally available but that the
grid must modify its behavior as to extract the maximum
performance from the available resources.

Context and purpose of Grids

By the end of 20th century the prices of computer decreased
where as its computing power increased. So it became clear
that we can use large number of low cost computers instead of
a high cost super-computer then that could provide same
performance at much lower cost. But the scenario is not
entirely true as even super-computers are available at lower
cost. As always in the case of engineering, if we optimize one
variable, in this case cost, we must offset that gain for a loss in
some other aspect of the system. Compared with a
supercomputer, clusters pay the price for this low cost in
communication overhead and RAM size. Because processes
must communicate with other processes via the network, rather
than hardware on the motherboard, communication is much
slower. Also, high-speed RAM availability is limited by the
amount of memory available to hosts in the cluster. Under
these constraints, clusters have still proven invaluable in high-
performance computing for solving problems that can easily be
broken into many smaller tasks and distributed to workers.
Ideal problems require little communication between workers,
and their work product can be combined or processed in some
way after the tasks have been completed. So grid can sort out
above problems if they have a supercomputer to perform those
tasks. The grid then provides some means to authenticate our
task and authorize the supercomputer to solve those problems.
It also checks the progress of the supercomputer while
executing the task. Even if the supercomputer is in different
hemisphere or owned by different organization it completes
the task assigned and send backs the result. At last the grid
even debits our account for using this service. In research and
academic institutions where funding for research is distributed
to various institutions, Grids solves all resource sharing
problems. Sometimes researchers need to share experimental
data generated by expensive sensors.

Ian Foster, who is popularly known as the father of grid
computing, suggests three important conditions that should be
fulfilled to fit in the categories of grid. They are as follows:

 Coordinates resources that are not subject to centralized

control;
 Uses standard, open, general-purpose protocols and

interfaces; and
 Delivers nontrivial qualities of service.

Out of these three, the first one is a grid which defines the
software requirement that is used for sharing of resources
which crosses various organizations. The second one defines
the context of the grid and third one defines the quality of
services (QOS) that discriminate a grid from a cluster.
Although clusters provide some levels of quality of services,
they are not so important in comparison to providing QOS that
offer decentralized control of resources.

Different grids and clusters used in Java

A number of grid frameworks can host services implemented
in Java. In other words many frameworks are implemented
entirely in Java. Although a grid service named the Globus
Toolkit 4 (GT4 (Foster et al., 2006, 1997)) mentioned in this
paper is implemented in Java but the framework is
implemented both in Java as well as in C. Since reference
implementation of the Open Grid Services Architecture
(OGSA (Foster et al., 2002)) is Globus toolkit 4. So all the grid
tutorial on grid technology should start with a Globus grid
service implementation and is based on the Grid services
Infrastructure (OGSI (Tueckeet, 2003)).

Algorithm of Globus Grid Service

In this algorithm the work is distributed among many persons
and it can be made available parallel by splitting the
processing into discrete pieces. Here the algorithms can be
made parallel if one part of result does not depend on other
part. For example if we want to find out all the prime numbers
between 1 to 1000, then we divide these numbers into 10
different sets of 100 each i.e. 1 to 100, 101 to 200 and so on.
Then these 10 sets of numbers are sent to 10 different
computers for processing. These systems should process the
work in isolated manner. Here the communication overheads
can be ignored. In this paper grid service can be implemented
for testing special primes called Mersenne primes. It should be
noted that Mersenne primes are those primes who are of the
form 2 to the power (p-1). This is an important area of interest
of several mathematicians as they can represent largest known
prime numbers using this algorithm. To check for a Mersenne
prime number, grid service will apply Lucas-Lehmer test using
BigInteger class of Java. The BigInteger class of Java
implements integers of unbounded size. To test for primality,
the Lucas-Lehmer test is an easy and simple method. The
given below code implements this test as shown in algoritm 1:

Algorithm 1

mrsn = 2 ^ power - 1
 lcs = 4
 for(i = 3; i <= power; i++)
 lcs = (lcs ^ 2 - 2) % mrsn;
 if (lcs == 0) then 2 ^ power - 1 is a Mersenne prime

Implementation of Globus Grid Service

This grid service is implemented using GT4 web services and
Globus service Build tools, which should be downloaded from
the web.
This download contains a simple standalone container and the
Java implementation used for testing services. Here the
purpose is to make the Globus grid service as simple as
possible.

Defining the Web service interface using WSDL

Grid service is implemented by GT4 as web services but this
web services must comply with web service resource
framework (WSRF (Foster et al., 2005)) specifications.

16845 Anil Barnwal, Suitable and efficient grid computing using Java

WSRF improves the vanilla web services with statefullness.
Here the complexities associated with a stateful
implementation can be ignored since this service does not
maintain any state. Without statefullness, the WSDL (Web
Services Description Language) is much simpler. The
following WSDL describes the stateless grid service as shown
in Figure 1:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MersennePrmService"
targetNamespace="http://www.javaworld.com/
 namespaces/MersennePrmService_instance"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://www.javaworld.com/namespaces/Mersenne
PrmService_instance"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <xsd:schema targetNamespace=

"http://www.javaworld.com/namespaces/MersennePrmService
_instance"
xmlns:tns="http://www.javaworld.com/namespaces/Mersenne
PrmService_instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- Input Parameters-->
 <xsd:element name="test" type="xsd:int"/>
 <!-- Output Parameters-->
 <xsd:element name="testResponse" type="xsd:boolean"/>
 </xsd:schema>
 </types>
 <!-- Messages-->
 <message name="TestInputMessage">
 <part name="parameters" element="tns:test"/>
 </message>
 <message name="TestOutputMessage">
 <part name="parameters" element="tns:testResponse"/>
 </message>
 <!-- Porttype-->
 <portType name="MersennePrimePortType">
 <operation name="test">
 <input message="tns:TestInputMessage"/>
 <output message="tns:TestOutputMessage"/>
 </operation>
 </portType>
</definitions>

Figure 1

This above mentioned WSDL can be considered as simple,
standalone web service definition of an interface method
having its own input and output messages.
The request element with the attribute name “test” defines the
request type as of “primitive int” type and the response
element with the attribute name “testResponse”, also defines
the response type as of “primitive int” type. Now for the
interface that is defined in the WSDL to work, a method in the
grid service must be implemented that matches the method
public int test (int)

Implementing grid services in java

The service methods of the interface defined in the WSDL
(web service description language) implements the Mersenne
prime test pseudo-code. To test for primality it takes an
exponent as an argument. If the exponent passes the Lucas-
Lehmer test, then a Mersenne prime has been found of the
form 2^exponent-1. Although Mersenne prime search
implementation is relatively not very effective. The reason is
that here the method should search a range of exponents
instead of a single exponent. The cost of using such services is
also relatively high and the algorithms that is used here is not
much efficient as compared to algorithms that use Fast Fourier
Transforms to multiply large numbers. The code given in
algorithm 2 below implements the Globus grid service:

Algorithm 2

 package prime.impl;
import java.math.BigInteger;
import org.globus.wsrf.Resource;
public class MersennePrmService implements Resource {
 private static final BigInteger ZERO = new BigInteger("0");
 private static final BigInteger ONE = new BigInteger("1");
 private static final BigInteger TWO = new BigInteger("2");
 private static final BigInteger FOUR = new
BigInteger("4");

 public boolean test(int exponent) {
 BigInteger mersenne =
TWO.pow(exponent).subtract(ONE);
 BigInteger lucas = FOUR;

 // perform the Lucas-Lehmer test
 for (int i = 3; i <= exponent; i++) {
 lucas =
lucas.multiply(lucas).subtract(TWO).mod(mersenne);
 }
 // if zero, this is a mersenne prime
 return (lucas.compareTo(ZERO) == 0);
 }
}

It should be noted that in the above example the service class
implements an interface called Resource. This interface marks
the service as a resource to be managed by the Globus
Framework. Here the main purpose of the grid is to share
resources in refined ways. In other words, this service is a
computational resource that will be shared on a Globus grid.

Writing JNDI and the Web service deployment descriptor
(WSDD)

A file with an extension of .wsdd, also called deployment
descriptor, defines a service element. The service interface is
defined using a file written in WSDL and is referred using a
wsdl file. The class that implements this service name is
defined using className attribute and a child parameter. This
name will determine the service URI (Uniform Service
interface). The grid service then reads this file, loads the
service, and begins listening for requests on the path
MersennePrmService relative to the base path.

16846 International Journal of Current Research, Vol. 7, Issue, 06, pp.16844-16849, June, 2015

The standalone container that is used to host this example uses
URL(uniform resource locator)
http://localhost:8080/wsrf/services as a base path and the client
that access service Mercenne Prime Service uses the combined
URI: http://localhost:8080/wsrf/services/examples
/core/first/MathService.

Figure 2 is the XML instance that defines the service

 <?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <service name="MersennePrmService" provider="Handler"
use="literal" style="document">
 <parameter name="className"
value="prime.impl.MersennePrmService"/>
<wsdlFile>share/schema/prime/
MersennePrime_service.wsdl</wsdlFile>
 <parameter name="allowedMethods" value="*"/>
 <parameter name="handlerClass"
value="org.globus.axis.providers.RPCProvider"/>
 <parameter name="scope" value="Application"/>
 <parameter name="providers" value="GetRPProvider"/>
 <parameter name="loadOnStartup" value="true"/>
 </service>
</deployment>

Figure 2

Figure 3 is the XML instance that populate the JNDI (Java
Naming and Directory Interface) context with a Globus factory
class that is used to instantiate the service.

<?xml version="1.0" encoding="UTF-8"?>
<jndiConfig xmlns="http://wsrf.globus.org/jndi/config">
<service name="MersennePrmService">
 <resource name="home"
type="org.globus.wsrf.impl.ServiceResourceHome">
 <resourceParams>
 <parameter>
 <name>factory</name>
 <value>org.globus.wsrf.jndi.BeanFactory</value>
 </parameter>
 </resourceParams>
 </resource>
</service>
</jndiConfig>

Figure 3

The service name in bold above must match the service name
in the WSDL file.

Create the Globus Archive (GAR) file

The grid service can be defined and configured using WSDD
and JNDI deployment files, WSDL and Java Grid service
implementation. To generate and compile the web service stub
source its implementation must be compiled. For this the build.
xml Ant script of the Globus build service package should be
used. This package contains many scripts, including a shell
script for Unix and a Python script for Windows.

Here the build’s properties which are defined in build.
Properties file are used rather than these scripts. This file is
included in the root directory of source file. However the
build.xml file is to be copied from its root directory to
service’s root directory to expand the Globus Build service.
For this a file with .gar extension is to be created. This file is
created by invoking Ant from the command prompt as follows:
/service>ant But before that is to be done, a couple of
environment variables are to be set. On windows platform
following command is to be executed as shown in Figure 4:

 set ANT_HOME=c:\apache-ant-1.7.0
 set GLOBUS_LOCATION=c:\ws-core-4.0.4
 set
PATH=%ANT_HOME%\bin;%GLOBUS_LOCATION%\bin;
%PATH%

Figure 4

On Unix platform following commands is to be executed as
shown in the Figure 5:

export ANT_HOME=/apache-ant-1.7.0
export GLOBUS_LOCATION=/ws-core-4.0.4
export
PATH=$ANT_HOME\bin;$GLOBUS_LOCATION\bin;$PAT
H

Figure 5

If everything goes well, then a file called mersenne.gar will
appear in the service’s root directory. When this gar file is
deployed, it will appear in the standard directory visible to the
standalone grid service container.

Deployment of the service

The gar file that is created in the last step can be deployed by
executing the following at command prompt:

/service>globus-deploy-gar mersenne.gar

Now some primes can be tested by implementing a client to
query the service and send it an exponent to test.

Implementing the client

To implement the client, it takes two parameters: a service
URI and an exponent. The client then passes this exponent to
the grid service, get the response and prints whether it passes
the primality test or not. Algorithm 3 shows the actual
implementation.

Algorithm 3

package prime.impl;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import org.apache.axis.message.addressing.Address;
import
org.apache.axis.message.addressing.EndpointReferenceType;
import org.apache.axis.types.URI.MalformedURIException;

16847 Anil Barnwal, Suitable and efficient grid computing using Java

16847 Anil Barnwal, Suitable and efficient grid computing using Java

import com.javaworld.www.namespaces
 .MersennePrmService_instance.MersennePrimePortType;
import
com.javaworld.www.namespaces.MersennePrmService_instan
ce
 .service.MersennePrmServiceAddressingLocator;
public class MersennePrimeClient {
 public static void main(String[] args) {
 MersennePrmServiceAddressingLocator locator = new
MersennePrmServiceAddressingLocator();
 int status = 0;
 if (args.length != 2 || args[0] == null || args[1] == null) {
 System.out .println("You must enter the service URI and a
exponent to test for primality.");
 status = 1;
 } else {
 int exponent = -1;
 String serviceURI = args[0];
 try {
 exponent = Integer.parseInt(args[1]);
 EndpointReferenceType endpoint = new
EndpointReferenceType();
 endpoint.setAddress(new Address(serviceURI));
 MersennePrimePortType mersennePrimePortTypePort =
locator
 .getMersennePrimePortTypePort(endpoint);
 if (mersennePrimePortTypePort.test(exponent)) {
 System.out.println("2^" + exponent + "-1 is a Mersenne
prime!");
 } else {
 System.out.println("2^" + exponent + "-1 is not a
Mersenne prime.");
 }
 } catch (NumberFormatException e) {
 System.err.println("Error parsing end [" + exponent +
"].");
 } catch (MalformedURIException e) {
 System.err.println("Error parsing [" + serviceURI + "].");
 e.printStackTrace();
 } catch (RemoteException e) {
 System.err .println("Could not make a remote connection
to the Grid Service at URI ["+ serviceURI + "].");
 e.printStackTrace();
 } catch (ServiceException e) {
 System.err.println("The Grid Service at URI [" +
serviceURI + "] threw an Exception.");
 e.printStackTrace();
 }
 }
 System.exit(status);
 }
}

Now to use this service on the Unix platform, the following
script is to be included as a classpath environment variable
with all of the globus dependencies:

Source $GLOBUS_LOCATION/etc/globus-devel-env.sh
And on windows the following path to be used:

$GLOBUS_LOCATION/etc/globus-devel-env.bat

Next the service is compiled using java interpreter, javac as
follows:

/service> javac – classpath ./build/stubs/classes/:$classpath –
sourcepath src src/prime/impl/MersennePrimeClient.java
Then the container should be started as follows:

/service> globus-start-container –nosec

Once the container is started, it will return a list of URIs
(Uniform Resource Interface) for all its hosted services.

The client application can be invoked by including build/class
in the classpath environment variable. The script globus-devel-
env.sh or globus-devel-env.bat defined in the classpath
contains the list of all necessary Globus dependencies. Here
two arguments are passed to the application. The first one
specifies the service URI and the second one specifies the
exponent to test. For example to test the exponent 3 of the
Mersenne number 5, the following is the output:

/service> java –cp build/class:$classpath
prime.impl.MersennePrimeClient
http://132.147.10.6:8080/wsrf/services/MersennePrmService 3
2 to the exponent 3-1 is a MersennePrime Prime !!!
To test for 4, the client returns the different message:

/service> java –cp build/class:$classpath
prime.impl.MersennePrimeClient
http://132.147.10.6:8080/wsrf/services/MersennePrmService 3
2 to the exponent 4-1 is a not MersennePrime Prime !!!

Conclusion

In this paper a person gets to know about grid products and
grid enabled products. Grids basically coordinate with
decentralized resources. Grids often communicate with
different interfaces and open protocols. Grids can deliver non-
trivial qualities of service. Although grids play a very
important role in distributed environment but they suffer from
having to cope with an extremely complex distributed
environment. Since in a computationally complex environment
the computational resources arrive at a much faster speed so
the application must process many transactions per second so
that the load must be distributed. Now if we do not want these
resources to be shared or do not want to outsource the
processing to some other organization then a cluster will
probably meet the required needs more easily and simply.

REFERENCES

Foster, I., .Czajkowski, K., Ferguson, D., Frey J., Graham S.,

Snelling D. and Tuecket S. 2005. Modeling and Managing
State in Distributed Systems : The Role of OGSI and
WSRF, Proceedings of the IEEE, 93(3),

Foster, I., Kesselman, C., Nick, J. and Tuecket, S. The
Physiology of the Grid : An Open Grid Services
Architecture for Distributed Systems Integration. Draft of
6/22/02.http://www.gridforum.org/ogsiwg /drafts /ogsa _
draft2 .9_ 2002-06-22.pdf

16848 International Journal of Current Research, Vol. 7, Issue, 06, pp.16844-16849, June, 2015

Foster, I. 2006. “Globus Toolkit version 4:Software for Service
Oriented Systems” ,IFIP International Conference On
Network and parallel computing, Springer-Verlag LNCS
3379, pp 2-13,

Foster, I. and Kesselman C. Globus : 1997. A Metacomputing
In frastructure Toolkit. International Journal of Super
computer, Applications, 11(2). 115-128 .

Foster, I. and Kesselman, C. 1998. Editors. The Grid:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, ISBN:1-
55860-475-8.

Foster, I. and Kesselman, C. 1998. The Globus Project: a
Status Report. In Proc. IPPS/SPDP’98 Workshop on
Heterogeneous Computing, pp. 4–18,

Sharma Raksha, Son Vishnu Kanti, Mishra Manoj Kumar,
Bhuyan Prachet. 2010. A Survey of Job Scheduling and
Resource Management in Grid Computing, World
Academy of Science, Engineering and Technology Vol:4 ,

Smarr, L. and Catlett, C. 1992. Metacomputing.
Communications of the ACM, 35(6):44–52, June

Somasundaram, K., Radhakrishnan, S. and Gomathynayagam,
M. “Efficient Utilization of Computing Resources using
Highest Response Next Scheduling in Grid” 6 (5): 544-
547, Asian Journal of Information Technology, 2007

Tueckeet, S. et al. 2003.Open Grid Serv ices Infrastructure
(OGSI) Version 1 .0. Global Grid Foru m. GFD-R - P. 15.
Version as of June 27.

16849 Anil Barnwal, Suitable and efficient grid computing using Java

