

STRUC

*Dr. Smitha

Departmen

ARTICLE INFO ABSTRACT

 Relati
have d
data—
the ca
log fil
and So
to be i
data m
umbrell
today ga
perform
various
retrieved

Copyright © 2015 Dr. Smitha Rao and Kohila Kanagal
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

A relational database is a set of structures con
into predefined categories (Leavitt, 2010) kn
are organized as row and columns. Users
in different ways using joins without having
database tables. Over 2.5 Exabyte of data i
day. This data can be accumulated from va
transactions from a large stock exchange cap
TB of data every day, data transmitted
billion smart phones, more than 48 hour
minute from YouTube, data from social med
and Facebook captures more than 10 TB of d
rapid growth of the Internet, product relat
conversations have migrated to online marke
electronic communities that provide a wealt
Millions of users share their opinions
platforms like Twitter, Facebook etc. m
valuable platform for tracking and a
sentiment. Such tracking and analysis c
information for decision making in various d
data from these sources are not necessaril
major types of big data can be prim
Structured data - which can be repres
designed and rigidly defined tabular format,
data - data which does not have a formal data
data and Unstructured - data which does not h

*Corresponding author: Dr. Smitha Rao, M. S.

Department of MCA DSCASC, Bangalore, India.

ISSN: 0975-833X

Article History:

Received 27th January, 2015
Received in revised form
20th February, 2015
Accepted 14th March, 2015
Published online 28th April, 2015

Key words:

Big Data, NoSQL,
Data Wrangling,
BASE,
CAP.

RESEARCH ARTICLE

CTURING UNSTRUCTURED BIG DATA

a Rao, M. S. and Kohila Kanagalakshmi, T.

partment of MCA DSCASC, Bangalore, India

ABSTRACT

ional databases which use SQL have a long- standing
dominated the database markets for a long time. Relational d

—such as a set of sales figures—which readily fits in w
ase with unstructured data, such as that found in word-proce
les etc. Especially in large scale and high concurrency a
ocial media using the relational database to store and query
inadequate. The advent of Big Data created a need for out-

management systems. This ushered in an array of choices
lla term NoSQL, new technology for storage of large unstr
gaining importance due to their linear scalability, schema f
mance This paper highlights the implementation of NoS
s solutions to structure the unstructured data in terms
ed from NoSQL databases.

lakshmi. This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited.

ntaining data fitted
nown as tables that
s can access data
g to reorganize the
is generated every
arious sources like
ptures more than 1

 from about 1.75
rs of video every
dia such as Twitter
data daily etc.With

ated word-of-mouth
ets, creating active
th of information.
s on social media
making them a
analyzing public

can provide critical
us domains. But the

ly structured. The
marily classified as
sented in a well
, Semi- Structured
a model like XML-
have a

pre-defined\data model like the d
mails etc. Apart from the varia
the four main parameters ch
volume, velocity, variety and v
storage and retrieval of semi-s
poses serious issues. NoSQL
importance due to their linear
and comparatively higher perfo
NoSQL databases are CouchDB
etc. This paper aims at analyz
storage mechanisms for unstru
performance in terms of analysi

The organization of the paper
classification of Big Data ar
emergence of NoSQL databas
Section IV presents the conce
big data in prominent No
conclusions are drawn in sectio

Big data

Data that is too big and com
analyze, and interpret using
methods is referred to as Big D
the data in the world today h
years alone. This data is accum
climate information through se
social media, transaction i

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 7, Issue, 04, pp.14697-14701, April, 2015

 INTERNATIONAL

 z

i, T.

g position in most organizations and
databases work best with structured
well-organized tables. This is not
cessing docu- ments, social media,
applications, such as search engines
 dynamic user data has been found
-of-the-box horizontal scalability for

es for Big Data Management under the
ructured data. NoSQL databases are
flexibility and comparatively higher

SQL databases. It seeks to analyze
 of the way data is stored and

is an open access article distributed under the Creative Commons Attribution License, which

e data found in log files, blogs,
ation in the structure of the data
haracterizing Big Data include
veracity. Due to these concerns
structured and unstructured data
L databases are today gaining
r scalability, Schema flexibility
formance. Few of the prominent
B, Cassendra, Neo4j, mongoDB

yzing various solutions to design
ructured data to optimize their
is and performance.

 is as follows. The concept and
re presented in section II, the
ses are discussed in Section III.
cepts of structuring unstructured
oSQL databases and finally

on V.

mplex to capture, store, process,
 the state-of-the art tools and
Data. According to IBM, 90% of
has been created in the last two
mulated through components like
ensors, data accumulated though
information through financial

INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

institutions, online marketing components, data from cell
phones etc. The four dimensions of big data are Volume,
Variety, Velocity and Veracity. Volume refers to how much
data has to be stored and processed, Velocity refers to the
speed of generating and processing data, Variety focuses on the
type of data that is to be analyzed and Veracity refers to the
accuracy of the data in predicting business worth. Prior to
processing the data it needs to be verified in terms of both
accuracy and context. The real issues concerning big data is not
the accumulation of data but the analytics to be performed to
gain insights from the massive amounts of data. The insights
could be for reducing costs and time, developing new products,
finding the root cause of failures, optimizing business
performance through smarter and in time decision making
etc. A Big Data project is normally typified by the data variety
– storage of data that is structured, semi-structured and
unstructured. The phrase "structured data" usually refers to
information that reside in a traditional row-column database. In
semi-structured data there is no separation between the data
and the schema and the amount of structure used depends on
the purpose. Example XML documents, logs and EDI are all
forms of semi-structured data. But “unstructured data” often
include text and multimedia content. Examples include e-mail
messages, word processing documents, videos, photos, audio
files, presentations, webpages and many other kinds of
business documents and they doesn't fit neatly in a database.
Better data structures to represent data and efficient data stores
to store and efficiently retrieve data from are the need of the
day. File systems and Relational databases were found to be
inadequate. Data must be viewed holistically. The emergence
of NoSQL databases has proved to fruitful solving many of the
Big Data related issues. Apart from tackling big data issues
modern databases should also assist in tall the phases of
information cycle – Acquire, Store, Process and Use/Present.

Fig.1. Classification of Big Data

NoSQL databases

Relational Database Model developed by mathematician Edgar
F Codd is an hierarchical file system that allows records to be
accessed using simple index system. Today RDBMS is
insufficient to maintain the large volumes of data generated.
This deficiency has given rise to an alternative system -
NoSQL i.e. Not Only SQL that encompasses a wide range of
database products that relies on various flexible data models.
The main features of NoSQL databases are:

 Dynamic Schema
 Linear Scalability
 Throughput Oriented Architecture

 Continuous Data Availability
 Running well on clusters
 Mostly open-source
 Eventually consistent/BASE

A NoSQL application works with data-models that are
specifically designed and optimized for applications. NoSQL
databases allows developers to develop without having to
convert in-memory structures to relational structures. In 2000,
Eric Brewer popularized the acronyms "BASE"(Basically
Available, Soft state, and Eventual consistency) and “CAP”
(Consistency, Availability and Partition Tolerance) in his talk
at ACM Symposium. Real time decision support system
requiring big data analytics can be eventually consistent rather
than rigidly following ACID properties of relational databases.
The CAP theory mentioned by Brewer explains the theoretical
divide between ACID and BASE compliant databases.
Understanding the requirements and designing a flexible and
scalable dataset design in-line with the application can
optimize decision support process.

Many NoSQL systems enable client interaction through
Representational State Transfer (REST) API. Protocol buffers
(Protobuf) is a method for efficiently serializing and
transmitting structured data. Serialization is to store not just the
data but information about the data in stream of byte to help
access to user-specific information across applications.
JavaScript Object Notation (JSON) is a lightweight, text-based,
open standard format for exchanging data between a server and
a Web application. BSON is a format for binary-coded
serialization of JSON-like documents (Gudivada et al., 2014)
used in NoSQL.

NoSQL database environments are built with a distributed
architecture so there are no single points of failure and there is
built-in redundancy of both function and data. If one or more
database servers, or ‘nodes’ goes down, the other nodes in the
system are able to continue with operations without data loss,
thereby showing true fault tolerance, location independence
and continuous availability. The various types of NoSQL
databases are:

 Key-Value Store - This kind of databases have a set of
key- value pairs where key is unique and identifies a value.
The key can be synthetic or auto-generated while the value
can be String, JSON, BLOB (basic large object) etc.
Limitations of this model is that it will not provide any kind of
traditional database capabilities such as atomicity or
consistency. Such capabilities must be provided by the
application itself. As the volume of data increases,
maintaining unique values as keys may become more
difficult. Example: Riak and Amazon’s Dynamo

 Column-Family Database / Wide-Column Stores –
similar to key-value stores, except the keys point to multiple
columns instead of rows, arranged by column family.
Example: Cassandra, HBase
 Document Store –Pair each key with a complex data
structure (usually in JSON or XML format) known as a
document. These are essentially nested key-value stores, with
keys being associated with nested values. Documents may

14698 Smitha Rao and Kohila Kanagalakshmi, Structuring unstructured big data

contain key-value pairs, key-array pairs or even nested
documents. Example: MongoDB, CouchDB
 Graph Database-In some applications, relationships
between objects are even more important than the objects
themselves. Relationships can be static or dynamic. Such data
is called connected data. Twitter, Facebook, Google, and
LinkedIn data are naturally modeled using graphs.

The downside of using NoSQL databases are attributed to the
fact that these databases lack proper standardized
interfaces, they have low maturity compared to the relational
databases and there is no proven and proper troubleshooting
mechanisms and support from vendors.

Structuring unstructured big data in prominent
nosql databases

NoSQL databases and management systems are relation- less
(or schema-less). NoSQL databases are not "One size fits all"
(i.e.) they are not based on a single model. They are
designed to efficiently store significant amounts of
unstructured data. This section explores how unstructured data
are stored and retrieved in various NoSQL technologies like
HBase (Column-Oriented database), MongoDB(Document
database), OrientDB (Multi model database), ArangoDB
(Multi model database).

A. HBase: It is a column-oriented database. It can manage
structured and semi-structured data and has built-in features
such as scalability, versioning, compression and garbage
collection. Since it uses write-ahead logging and distributed
configuration, it can provide fault-tolerance and quick recovery
from individual server failures. HBase built on top of Hadoop /
HDFS and the data stored in HBase can be manipulated using
Hadoop’s MapReduce capabilities.

Data in HBase is stored in Tables and these Tables are stored
in Regions. When a Table becomes too big, the Table is
partitioned into multiple Regions. These Regions are assigned
to Region Servers across the cluster. Each Region Server
contains a Write-Ahead Log (called HLog) and multiple
Regions. Each Region in turn is made up of a MemStore and
multiple StoreFiles (HFile). Where the data lives in the form of
Column Families. The MemStore holds in-memory
modifications to the Store data.

The mapping of Regions to Region Server is kept in a system
table called .META. When trying to read or write data from
HBase, the clients read the required Region information from
the .META table and directly communicate with the
appropriate Region Server. Each Region is identified by the
start key (inclusive) and the end key (exclusive) .

HBase actually defines a four-dimensional data model and the
following four coordinates define each cell.

 Row Key: Each row has a unique row key; the row key

does not have a data type and is treated internally as a
byte array.

 Column Family: Data inside a row is organized into

column families; each row has the same set of column
families, but across rows, the same column families do
not need the same column qualifiers. Under-the-hood,
HBase stores column families in their own data files, so
they need to be defined upfront, and changes to column
families are difficult to make.

 Column Qualifier: Column families define actual
columns, which are called column qualifiers.

 Version: Each column can have a configurable number of
versions, and you can access the data for a specific

 version of a column qualifier.

Fig 2. HBase Four-Dimensional Data Model

Source: http://www.informit.com/articles/article.aspx?p=2253412

HBase data can be accessed in two ways:

 Through their row key or via a table scan for a range of
row keys

 In a batch manner using map-reduce

HBase addresses both a key/value store for real-time analysis
and supports map-reduce for batch analysis.

B. MongoDB: This is made up of databases which contain
collections of documents having fields. Collections can be
indexed to improve lookup performance. The key decision in
designing data models for MongoDB applications revolves
around the structure of documents and how the application
represents relationships between data. There are two tools that
allow applications to represent these relationships: references
and embedded documents.

References store the relationships between data by including
links or references from one document to another. Applications
can resolve these references to access the related data. Broadly,
these are normalized data models.

Embedded documents capture relationships between data by
storing related data in a single document structure.
MongoDB documents make it possible to embed document
structures as sub-documents in a field or array within a
document. These denormalized data models allow applications
to retrieve and manipulate related data in a single database
operation.

If the document size exceeds the allocated space for that
document, MongoDB will relocate the document on disk and
adaptively adjusts the amount of automatic padding to reduce

14699 International Journal of Current Research, Vol. 7, Issue, 04, pp.14697-14701, April, 2015

occurrences of relocation. BSON is a binary serialization
format used to store documents and make remote procedure
calls in MongoDB. GridFS is a specification for storing and
retrieving files that exceed the BSON-document size limit of
16MB.

Instead of storing a file in a single document, GridFS
divides a file into parts, or chunks and stores each of those
chunks as a separate document. By default GridFS limits chunk
size to 255k. GridFS uses two collections to store files. One
collection stores the file chunks, and the other stores file
metadata. While querying a GridFS for a file, the driver or
client will reassemble the chunks as needed. It allows to
perform range queries on files stored through GridFS and also
access information from arbitrary sections of files, which
allows you to “skip” into the middle of a video or audio file.
GridFS is useful not only for storing files that exceed 16MB
but also for storing any files for which you want access without
having to load the entire file into memory.

C. OrientDB is a document-graph database (multi model
database), Even if it is a document-based database, the
relationships are managed as direct connections between
records. OrientDB breaks the data into OO-like classes. Classes
can be schema-less, schema-full or mixed. These classes have
inheritance and in the graph world, can be either a (V)ertex or
an (E)dge subclass. Each class has one or more clusters, which
are “a generic way to group records”. Classes can be grouped
into clusters based on attribution.

For example, if there is Invoice class, you could group the
2014 invoices into a cluster Invoice2014 and the 2015 invoices
into Invoice2015 cluster. You specify which cluster to use for a
given record when you create that record. Every class has at
least one default physical cluster that is used if none is
specified on record creation. Records are an instance of a class.
They are documents in the Document DB sense, as well as
nodes in the Graph DB sense. Records live in a cluster and
have the schema defined by the class. Much of a graph
database’s speed comes from the ease of traversing the graph
from vertex to edge to vertex, etc. which is why graphs are the
choice of most social networking sites. These kinds of
relationships are meant to avoid joins.

OrientDB doesn't use JOINs. Instead it uses LINKs. A LINK is
a relationship managed by storing the target RID in the
source record. It's much like storing a pointer between two
objects in memory. OrientDB uses a new indexing algorithm
for both fast insertions and fast lookups.

 SB-Tree index, a new generation of algorithm designed to

manage high number of concurrent clients. Furthermore it
is durable by way of WAL (Write Ahead Logging)
avoiding the need to rebuild indexes in case of failure.

 Hash Index, Based on hashing are super fast on read and
write operations, but don't support range queries

 MVRB-Tree index, (Multi-Value-Red-Black Tree) as the
best of both worlds between B+Tree and Red-Black Tree:
fast insertion because it keeps the tree balanced with a
maximum of 3 rotations in the worst case (similar to Red-
Black Tree)

OrientDB’s distributed architecture offers the flexibility of
Multi-Master replication, where the database is replicated
across a group of clustered computers (nodes) which all have
access to updating the data. This can all be achieved
concurrently by nodes modifying the data at the same time.
OrientDB uses a Write Ahead Logging (WAL) Journal to make
all the changes durable even in the event of failure.

D. ArangoDB: Multi-Model Database using flexible
combinations of key-value pairs, documents and graphs.It
basically provides access to documents which are stored in
collections and are often called schemaless.

Documents in ArangoDB are uniquely identified by keys,
allowing key/value storage. They can be connected, allowing to
query them as graphs and even supports transactions with as
many documents. A specialized binary data file format is used
for disk storage. Structure data is stored separately from the
documents and shared between documents with the same
structure (i.e., with the same attribute names and types).
Sharing the structure data between multiple documents greatly
reduces disk storage space and memory usage for documents
and is shared over three servers by a user defined or
automatically chosen key.

Fig 3. ArangoDB - Multi Model Database

14700 Smitha Rao and Kohila Kanagalakshmi, Structuring unstructured big data

By default the cluster uses the internal _key attribute as a
sharding key. Alternatively you can choose one or more
attributes of the collection as user defined sharding key. In case
you want to use a unique index as a secondary index that
attribute must be used as a sharding key.

It supports various indexes like “Full-text”, “Geo”,
“Hash”, “Bitmap” and “Skip-list”. ArangoDB uses
AppendOnly/MVCC to update documents by which locks are
minimized and documents are quickly appended to the data
files without having to reorganize or find empty spots, etc.,
and access to the DB is through the REST interface and there
are no binary drivers.

ArangoDB can respond arbitrary HTTP requests directly
through the Foxx application framework to aggregate data from
multiple queries, to implement your own graph traversal
algorithm millions of node and to modify many documents in a
multi-collection transaction. This makes ArangoDB a
combined database/application server.

AQL (ArangoDB Query Language) is a declarative query
language and supports joins, graph queries, list iteration, results
filtering, results projection, sorting, variables, grouping,
aggregate functions, unions, and intersections. To access graph
data ArangoDB uses “Path traversals”- small programs written
in JavaScript. ArangoDB support the following ACID
properties.

Conclusion

Given the continuing trend of data growth, new generation of
solutions are required to cater to them. Data analytics over
humongous data sets seems possible only by using distributed
computation framework.A new generation of information
management systems, termed NoSQL systems, caters to this
trend and is apt for businesses that are planning to migrate
existing applications to adapt to new trends of data growth,
develop new applications involving unstructured data.
Structuring such unstructured large heterogeneous in a standard
mechanism will increase their usage and give greater insights
hidden in them.

REFERENCES

Bednar, P., Sarnovsky, M., ”RDF vs. NoSQL, databases for

the semantic web applications Applied Machine
Intelligence and Informatics (SAMI),” IEEE 12th
International Symposium, Publication Year: 2014 , Page(s):
361 – 364.

Bernstein, “D. Today's Tidbit: VoltDB,” Cloud Computing,
IEEE Volume: 1, Issue: 1 Publication Year: 2014, Page(s):
90 – 92.

Brewer, E. A. July 2000. Towards Robust Distributed Systems.
ACM Symposium on the Principles of Distributed
Computing. Retrieved from http://www.cs.
berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf.

Gudivada, V.N., Rao, D., Raghavan, V.V. ”NoSQL Systems
for Big Data,” Management in Proceedings of IEEE World
Congress , Publication Year: 2014 , Page(s): 190 – 197.

http://docs.mongodb.org/master/MongoDB-data-models-
guide.pdf

http://www.orientechnologies.com/docs/last/OrientDB-
Manual.pdf

http://www.thoughtworks.com/insights/blog/nosql-databases-
overview

https://docs.arangodb.com/manual.pdf
https://www.arangodb.com/2012/03/07/avocadodbs-design-

objectives
Leavitt, N. ”Will NoSQL Databases Live Up to Their

Promise?,” IEEE Volume: 43, Issue: 2 Publication Year:
2010 , Page(s): 12 – 14.

Man Qi, ” Digital forensics and NoSQL databases”, Fuzzy
Systems and Knowledge Discovery (FSKD), 11th IEEE
International Conference Publication Year: 2014, Page(s):
734 -739

XiaomingGao; Qiu, J. “Supporting Queries and Analyses
of Large-Scale Social Media Data with Customizable and
Scalable Indexing Techniques over NoSQL databases,“
Cluster, Cloud and Grid Computing (CCGrid), 14th
IEEE/ACM International Symposium, Publication Year:
2014 , Page(s): 587 – 590.

14701 International Journal of Current Research, Vol. 7, Issue, 04, pp.14697-14701, April, 2015

