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INTRODUCTION

Let Px)=P,x.w)=Xr09,W)T;(x) (1.1)

Where g;(w), g2(W),....... ,gn(W) is a sequence of independent random variables defined on a probability space (Q,A,Pr), each
normally distributed with mathematical expectation zero and variance one. Let Ng(a, ) = M(«a, §) be the number of real roots of
the equation P(x) = K in the interval (a, ) where multiple roots are counted only once. For the different forms of T;"(x)
asymptotic values for the mathematical expectation of N(a, ), denoted by EN(«, ), have been studied by various authors.
Assuming T} (x) = x’ and K = 0 it is shown, for example see Kac [7], that EN(—o00,00) ~ (2/m)logn for all sufficiently large n.
This asymptotic value persists in the work of Offord [4] when they considered the discrete coefficients of having values +1 and
— 1 with equal probability. Farahmad [5] for the case of normal standard coefficients shows that for K # 0 in the interval (—1,1)
the expected number of K level crossings i.e. roots of P(x) = K, is reduced to (1/m)log(n/K?) while outside this interval this
expected number remains the same as for the case of K = 0, as long as K = O(+v/n). For T;"(x) = cos jx, from the work of Dunnage
[3] and Farahmand [6], we know that for any K = O(v/n) and all sufficiently large n, EN(0,2) ~ (2/+/3)n. Therefore by
increasing it is invariant for the trigonometric one.

Here we consider the case of

Ty (=G + 1/2)T; ) (1.2)
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where T]-(x) is a Legendre polynomial, and therefore T]-(x) is a normalized polynomial orthogonal with respect to the weight
function unity. For K = 0 from Das [2] we know that EN(—1,1) ~ (n/v/3) when n is sufficiently large. Now this is interesting as it
raises the question as to which of the above patterns, if any the K-level crossings of the Legendre polynomial will follow, or what
is equivalent , for any K = O(v/n), where EN would reduce as K increase or not. As the oscillatory nature of classical orthogonal
polynomial is accurately known we will show how far these oscillations are transformed into random sum (1.1), where T;(x) is
defined as (1.2). We prove the following theorm:

THEORM 1. For any sequence of constants K,, such that (K2 /n) tends to zero as n tends to infinity, the mathematical expectation
of the number of real roots of the equation T(x) = K, satisfies EN(—1.1) ~ (n/+/3).

From the theorem therefore, we can see that, as far as the K- level crossings go, the behaviour of random Legendre polynomials is
similar to that of trigonometric polynomials, that is unlike the algebraic case, the expected number of K-level crossings is invariant

for any K = O(/n). On the basis of this evidence it seems interesting to ask, in general whether we can classify the oscillation of
different types of polynomials according to the behaviour of their K-level crossings namely, the algebraic types with EN =
O(logn) and the trigonometric types with EN = O(n).

2. APPROXIMATIONS

~ exp (—y?/2)dt And
(t) =8 = 2m)?exp (—t2/2);

Let () = m)~2 [7

Then by using the expected number of level crossings given by Cramer and Lead better [1, page 285] for our equation P(x)-K = 0
we can obtain

EN(,B) = [P (B/A)(1 - €2/ A2B)V? (—K/A) (20 (1)) + 1{20(n) — 1}dx,
Where A% = var{P(x)}, B? = var{P'(x)} C=cov{P(x), P'(x)}

And

n=—CK/A(A*B? — C*)'/2,
Let A? = A%2B? — C? and erf(x) = f; exp (—t?)dt, then we can write the extension of a formula obtained by Kac [7] and Rice [8]
for the cae of K =0 as

EN(@,B)= J} o exp (= det [ i exp (3 en(acp)as
(@ ByHL(@ frsay. (1)

For our case of random Legendre polynomials we set
Riy() =Ty TP () = T T (@) i=0,1.2.3; j=0.1,

Where Tn(i)(x) represents the ith derivative of T, (x) with respect to x. Then from the Darboux-Christoffel formula [7] putting
A,=m+ 1DR2n+3)2/202n + 1)V/2,

We can obtain

T o{T (0} = m)Ryo(x), (22)
"o T} COT ()= (n/2)Rp0(x) (2.3)

And

So{Ty () = (20/6)Rao(x)+ (/2D R (). (2.4)

We recall two well known recurrence formulae for Legendre polynomials [7],
nTn—l(x): (27’1 + 1)XTn(x) - (n + 1)Tn+1(x) (25)

and
(1 = x*) T ()= n{Tp_1 (%) — xT, ()} (2.6)
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We rewrite (2.6) for T, (x)and by the application of (2.5) we can obtain

() +TF () =2XTn (X)T (1) (¥)
1-x2

Thi1
Rio(x)=(n+1)

@2.7)

And
2072
Toey (OTR(0) + Trpr (OT4(x)= (n + 1) BT 2.8)

1-x2

To evaluate the right hand side of (2.7) we assume —1 4+ ¢ < x < 1 — ¢ where ¢ is any positive value smaller than one and we set
x = cos y. Then since from the Laplace formula [11] we have

Th(cosy) = ’nn:i cos {(n + %) y — %} + 0{(nsiny)3/2}

We can obtain,
T2 (x) + T?(x) — 2xT,(x)Tpp1(x) = nn:in [cos2 {(n + %) y— %} + cos? {(n + 2) y — %} — 2cosycos {(n + %) y — %} +
cos? {(n + %) Yy — %}] + O(nsiny) ™2

_ 2y/1-x2 1
==+ 0 ) (2.9)

n

Hence from (2.2), (2.3), (2.7), and (2.9) we get
2 (n+1D)2(2n+3)1/2 ( 1 )

N nr(2n+1)1/2(1-x2)1/2 n2(1-x2)2

(2.10)
To evaluate B and C we make use of the property that any Legendre polynomial T, (x) satisfies the equation

_ 2y, du -
(1-x2) oz ~2x—+n(nthu=0

This gives the value of T,/ (x) as

2xT,(x) —n(n+ )T, (x)
1—x?

Rewriting the above formula for Ty, (x)as well and then distributing them in the formulae for R,; (x) and R, (x) to obtain

_ !
Ryy (%) = (+1){nRo1 () +2Tp41 ()T (%)} 2.11)

1-x2

And

2xR10(%)—2(n+1)Tp (%) Tn+1(x)
1-x2

Ryo(x) = (2.12)

Differentiating (2.12) and using (2.11) we get

U -
Rag(x) = (n+1){nR01(x)+2:n_+;2(x)Tn(x)+2R10(x)} 4 BxnRo1 () ((ln_+x12))7;n(x)Tn+1(x)} 2.13)

Now by the first theorm of Stielzer [11, page 197] we have |T,, (x)| < 8n1/2(1 — x2)~%/%,
Thus

1
Ta@)Tni1 () =O(smzz)  And

T ()T ()= O(—57)

By putting these estimates in (2.11), (2.12) and (2.13) we can obtain

_ n(n+1)R1(x) n
R21(x) - (1_le;) + O((l_XZ)s/z)’
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Rao(x) = 2222 1 0(— ) And

(1-x2) (1-x2)3/2

_ {8x2/(1-x2)+n+n?}R10(x) n
R21(x) - (1-x2) =+ O((l_x2)s/2)’

Substituting the above formulae in (2.3) and (2.4) and since from (2.7) and (2.9), R (x) = 2(n + 1) /nm(1 — x*)V/? we get

¢=0 (5=57) (2.14)
And )
3 1/2 2
‘= 3n((::ji)1(§;l(+1i)x2)3/2 ((1—:2)5/2) (2.15)
3. PROOF OF THE THEORM

From (2.1), (2.10), (2.14) and (2.15) we note that changing x to -x will not change EN(«, 8). Therefore it suffices to determine the
asymptotic behaviour of EN(0,1). To this end we divide the real roots into two groups: (i) those lying in the interval (0, &) and
(1 —&,1) and (ii) those lying in the interval (g,1 — €). For the roots (i) which, it so happens, are negligible, we need some
modification to apply Dunnage’s [3] approach, which is based on an application of Jensen’s theorm [10, page 332] or [12, page
125]. For roots (ii) which yield the main contribution to the expected number of real roots, we use (2.1). The € should be chosen
such that it facilitates handling type (i) and type (ii) roots and also yields the smallest possible error term in approximations . It is
shown that £ = n~/# satisfies both requirements.

CONCLUSION

In this paper, considering T (x), T7(X)........... , T,(x) be a sequence of a normalized Legendre polynomials orthogonal with
respect to the interval (—1,1). It provides an asymptotic estimate for the expected number of K-level crossings of the random
polynomial goTg(X)+g{ Ty (X)+........... +gnTr(x) where g;(j = 0,1,............ ,n) are independent normally distributed random
variables with mean zero and variance one. The result for K = 0 remains valid for any K such that (K?/n)— 0 as n — o.
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