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INTRODUCTION 
 
A dependable, end-to-end, connection-oriented transport 
layer protocol that offers byte-stream-based services is 
TCP (Transmission Control Protocol) 
Internet services, such as HTTP (Hypertext Transfer Protocol) 
and the World Wide Web, as well as FTP (File Transfer 
Protocol), rely heavily on TCP. Even if the web architecture 
changes in the future, TCP and its applications will most likely 
be used continuously. However, in terms of performance and 
connection fairness, the famous TCP Tahoe and R
versions (as well as their variations) on the modern Internet 
should be improved. As a result, a great deal of TCP research 
has been conducted, and numerous enhancement strategies 
have been put forth.  The TCP Vegas version 
exceptional performance, making it one of the most 
promising techniques. TCP Vegas enhances TCP Reno's 
congestion avoidance mechanism. TCP Vegas dynamically 
modifies its window size when transmitting packets based 
on measured RTTs (round trip times). On the other hand, 
TCP Tahoe/Reno keeps expanding its window size until it 
detects packet loss. Through modeling and implementation 
trials, the authors in (3) conclude that TCP Vegas can 
achieve throughput improvements of up to 40% over TCP 
Reno.  
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ABSTRACT 

Wireless networks are inherently distinct from wired networks in numerous ways; TCP congestion 
control algorithms are not directly applicable to wireless networks due to these differences (e.g., 
higher error rates, prolonged delays, reduced bandwidth, frequent mobility, etc.). Therefore, 
improved techniques for controlling TCP congestion have been introduced. The primary objectives of 
those methods were to efficiently manage congestion, withstand loss with dependability, and reduce 
gearbox errors. Unique congestion management and avoidance techniques for the TCP/IP protocols 
Tahoe, Reno, New-Reno, Lite, TCP Vegas, and SACK are investigated and assessed in this study.
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The assumption that congestion is the only factor contributing 
to packet loss led to the development of TCP congestion 
management algorithms in the beginning. However, due to 
several circumstances, such as inclement weather, obstacles, 
multipath interference, wireless endpoint mobil
fading and attenuation, and packet loss, bit error rates in 
wireless networks are higher. 
 
TRADITIONAL TCP 
 
Previously, TCP established a connection by permitting the 
sender to send the maximum number of segments that the 
recipient had advertised, regardless of whether the router had 
enough spare capacity to handle the repeated packet injections 
or if the sender and recipient were connected by slower links. 
For two endpoints on the same network that exchange data, 
the previous version of TCP was appropriate. If either 
endpoint is on a separate network, issues may arise right 
away. If the router has to have extra
hold the packages that are being sent, then another problem 
may occur. Owing to this constraint, a congestion control 
method that can manage these issues needs to be 
developed. RFC (5) states that the slow start approach is 
the most suitable method for addressing this issue. 
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SLOW START    
 
To prevent network congestion, the slow start algorithm 
regulates the datagram flow in the system. The goal is to 
increase the slow-start congestion window exponentially. This 
is the slow start algorithm from (5). 
 
Add a congestion window to the per-connection state. Set 
the congestion window to one packet when starting or 
restarting after a loss. On each acknowledgement for a 
new data connection, increase the congestion window by 
one packet. Send only what is advertised to the recipient 
and within the given timeframe. 
 
By restricting the number of unacknowledged packets that 
may be in transit, TCP manages the data flows and attempts 
to keep a congestion window open.  
 
CONGESTION AVOIDANCE 
 
Congestion avoidance, as described in (5), is a TCP restriction 
strategy that controls slow start exponential duplication to 
prevent overflowing the network with segments that may 
otherwise cause congestion. With this algorithm, TCP 
reduces the congestion window by half for every loss. 
  
FAST RETRANSMIT 
 
Retransmission and fast recovery (5) rely on the TCP version 
used in Reno. Segments received out of sequence may cause 
TCP to produce an instant duplicate acknowledgment. The 
purpose of this duplication is to alert the sender that the 
segments they transmitted were received out of order and to 
let them know what sequence number to expect in the 
subsequent transmission. TCP waits for the receipt of a 
duplicate Ack with a small number. If three duplicates are 
approved, the segment is considered lost. TCP will, in this 
instance, retransmit the absent segment without waiting for 
the timer to expire. Below, fast recovery and fast 
retransmission are put into practice. 
 
FAST RECOVERY: Since a lost packet signifies potential 
congestion, congestion avoidance is achieved after a rapid 
retransmit of the absent segment. Fast recovery is the name 
given to this algorithm.  
 
PERFORMANCE EVOLUTION OF TCP VARIANTS: 
In this section, we argue the performance of various TCP 
versions regarding Tahoe, Reno, New Reno, SACK, FACK 
and Vegas.   
 
TCP Tahoe: Tahoe (6), (7) refers to the TCP congestion 
control algorithm, which Van Jacobson suggested in his 
paper, has some enhanced features in TCP implementation, 
including slow start, congestion avoidance, and fast 
retransmission. Tahoe recommends that whenever a TCP 
connection starts or re-starts after a packet loss, it should go 
through a 'slow start' procedure. This approach is because an 
initial burst might overwhelm the network, and the connection 
might never start. A slow start implies that the sender sets the 
congestion window to 1 and raises the CWD by 1 for each 
received ACK. Tahoe uses 'Additive Increase Multiplicative 
Decrease' for congestion avoidance. Tahoe stores half of the 
window as a threshold value, and a packet loss indicates 
congestion. After that, it starts slowly and raises CWD to one 

until it reaches the threshold value. Following that, CWD 
increases linearly until a packet loss occurs. The essential 
issue is that Tahoe detects packet losses through timeouts. 
TCP Tahoe's fast retransmission algorithm outperforms the 
most when the packets are lost due to congestion. The sender 
must wait for the retransmission timer to expire before 
implementing the fast retransmit algorithm. At the same time, 
fast retransmitting makes Tahoe perform significantly better 
than a TCP implementation.   The issue with TCP Tahoe is 
that it detects packet loss after the whole timeout period. The 
speed of TCP Tahoe decreases when a packet loss is found. 
Transmission flow quickly drops as a result. 
 
TCP Reno: Reno has maintained the fundamental ideas of 
Tahoe, including slow starts, avoidance, and fast retransmits, 
except it maintains improvements over Tahoe by adding to 
the fast recovery phase known as the rapid recovery algorithm 
(6). TCP Reno stimulates packet losses to estimate the 
available bandwidth in the network. Although there are no 
packet losses, TCP Reno continues to increase its window 
size by one during each round-trip time. When it experiences 
a packet loss, it reduces its window size to one-half of the 
current size. Reno suggests an algorithm called 'Fast 
Retransmit.' Senders can retransmit a segment without 
waiting for a timeout if the recipient receives three duplicate 
ACKs, which indicates that the segment was lost. When a 
single packet is lost from a data window, TCP Reno maintains 
it by a fast recovery mechanism; in contrast, when multiple 
packets are lost, Reno's performance is the same here as 
Tahoe's. This indicates that if multiple packets are lost from 
the same window, TCP Reno almost immediately drags out of 
fast recovery and stops until no new packet can be sent. 
Hence, TCP Reno cannot effectively handle multiple packet 
losses within a single window. TCP Reno then enters a fast 
recovery phase (9) if the fast retransmit algorithm finds the 
packet loss. In this phase, the window size is increased by one 
packet when a duplicate ACK packet is received. (8) 
 
TCP New Reno: TCP New Reno (9) enhances retransmission 
in TCP Reno's fast recovery phase. In order to maintain a full 
transmit window during rapid recovery, a fresh unsent packet 
from the end of the congestion window is sent for each 
duplicate ACK returned to TCP New Reno. For every ACK 
that represents a portion of the the next packet beyond the 
ACKed sequence number is transmitted, and the sender 
assumes that the ACK leads to a new hole in the sequence 
space. Like TCP SACK, New Reno can fill big or many holes 
in the sequence space since the timeout timer is reset 
whenever there is progress in the transmit buffer. High 
throughput is maintained during the hole-filling process even 
when there are several holes, each carrying multiple packets, 
because New Reno can deliver new packets close to the end 
of the congestion window during fast recovery. In fast 
recovery mode, TCP logs the sequence number of the highest 
unacknowledged packet. Following acknowledgement of the 
sequence number, TCP goes back to its congestion avoidance 
state. 
 
TCP Vegas: The TCP congestion avoidance method known 
as TCP Vegas uses packet delay as a signal rather than packet 
loss to help decide how quickly to send packets.(3). TCP 
Vegas distinguishes itself from other versions like Reno, New 
Reno, etc., by detecting congestion early on through growing 
Round-Trip Time (RTT) values of the packets in the 
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connection. Other versions detect congestion only after it has 
occurred through packet loss. The Base RTT value must be 
calculated precisely for the algorithm to work. If the value is 
too great, it will overwhelm the connection, and if it is too 
small, the throughput of the connection will be less than the 
available bandwidth. 
 
TCP-Lite: To minimize the overhead associated with session 
management, TCP-Lite is a service that offers an alternate 
transport channel for TCP connections in which no 
application data is sent or received. During channel setup, 
teardown, and acknowledgement, TCP-Lite reduces or 
eliminates pure TCP protocol data units (PDUs) while 
preserving the order, integrity, reliability, and security of the 
original TCP transport. Applications that use TCP to 
communicate between a client and server can use TCP-Lite 
without modification. In environments where clients require 
multiple or frequent session establishment, TCP-Lite reliably 
reduces the amount of data transferred between the client and 
server (10). To manage the performance choices between an 
MNC and mobility clients that connect to it, a TCP-Lite 
transport is applied to a connection profile, which is a 
collection of configuration properties provided to an MNC.   
The following features are included in TCP Lite:  
Slow start, avoidance of congestion, fast retransmission, 
quick recovery, large window, and protection against wrapped 
sequence numbers are only a few of the features available. 
 
Comparison of TCP Algorithms 
 

Algorithms/ TCP 
Variants 

TCP Tahoe TCP 
Reno 

TCP New 
Reno 

TCP 
Lite 

TCP 
Vegas 

Slow Start Yes Yes Yes Yes E V 

Congestion Avoidance Yes Yes Yes Yes E V 

Fast Retransmit Yes Yes Yes Yes Yes 

Fast Recovery No Yes E V Yes Yes 
Retransmission on 

mechanism 
N N N N N M 

Congestion Control 
mechanism 

N N N N N M 

Selective ACK 
mechanism 

No No No Yes No 

  (N = Normal, E V = Enhanced Version, N M = New Mechanism) 
 
Results and Analysis Based on Throughput, Signal 
Received with error, Packet Loss and Total Bytes 
Received. 
 

 
 

Figure 1. Mobility vs. Throughput 
 
 

 
 

Figure 2. Mobility vs. Signal Received with error 
 

 
 

Figure 3. Mobility vs. Byte Received 

 
 

Figure 4. Mobility Vs Packet Loss 
 

 
 

Figure 5 Pause Time vs. Throughput 
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Figure 6. Pause Time vs. Byte Received 

 

 
 

Figure 7. Pause Time vs. Packet Loss 
 

 
 

Figure 8. Pause Time vs. Signal Received with error 
 

 
 

Figure 9. No of Node vs. Throughput 

 
 

Figure 10. No of Node vs. Byte Received 
 

 
 

Figure 11. No of Node vs. Signal Received with error 
 

 
 

Figure 12. No of Node vs. Packet Loss 
 

GUIDELINES FOR IMPROVING CONGESTION 
CONTROL ALGORITHM: Wireless environments have 
many different characteristics, such as higher error rates, longer 
delays, lower bandwidth, frequent mobility, and so on. TCP 
congestion control mechanisms are only sometimes directly 
suitable for wireless networks, and we have seen many 
improved TCP congestion control mechanisms. Generally, the 
influence of link corruption on the TCP sender's packet-sending 
rate is not considered in these enhanced schemes. However, 
unnecessary packets lost by corruption can be significantly 
avoided through the decrease of packet sending rate, which 
may lead to higher reliability, excessive energy consumption of 
mobile hosts, and less system overheads. For a given TCP 
connection, it is reasonable to assume that the possibility of 
packet loss by corruption can be obtained approximately from 
pe=m/n, where n is the number of total packets, and m is the 
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sum of packets lost by corruption during the period T. So, by 
using the corruption loss rate, the congestion control 
mechanism can be improved. In the following paper, we will 
propose a new mechanism called refined TCP. 
 

CONCLUSION 
 
In this paper, we have identified the possible causes of 
congestion over the network. We have also discussed the 
main intertwined algorithms that help to control congestion 
over the network. We also saw how TCP implements flow 
controls by having the receiver advertise the amount of data it 
is willing to accept. Then, we discussed TCP Reno fast 
retransmit and fast Recovery, TCP New Reno, and TCP 
Vegas congestion algorithms. We saw that the introduction of 
TCP Reno changed the way datagrams are exchanged. TCP 
Reno has performed remarkably well and has prevented 
severe congestion on the Internet. Although these algorithms 
have incredible potency in handling congestion, their 
limitation abounds. 
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