

RESEARCH ARTICLE

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 13, Issue, 06, pp.17706-17713, June, 2021

DOI: https://doi.org/10.24941/ijcr.41634.06.2021

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

OPEN ACCESS

RICE HUSK ASH: A SYSTEMATIC REVIEW OF ITS APPLICATIONS

*Dr. Vandana Yadav

Assistant Professor (Chemistry), Faculty of Science, BSSS, Bhopal, Madhya Pradesh

ARTICLE INFO

ABSTRACT

Article History: Received 24th March, 2021 Received in revised form 15th April, 2021 Accepted 18th May, 2021 Published online 26th June, 2021

Key Words:

Rice Husk, Silica, Ash, Nanomaterial, Renewable Energy. In recent years the agricultural waste or by-products has received increasing attention in the economic, scientific, social and technological areas. Rice husk (RH) is a by-product of rice milling and rice husk ash (RHA) is obtained by burning of rice husk in boiler. RHA, consists of large amount (approximately 85–95%) of amorphous silica. In past few years RH and its ash has been utilized extensively in different fields for synthesizing different materials and in wide variety of applications. The silica obtained from RHA or RH provides a potential substitute to conventional silica for the synthesis of many value-added products. This paper reviews the composition and application of Rice husk and Rice husk ash in various fields.

Copyright © 2021. Vandana Yadav. 2021. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Dr. Vandana Yadav. "Rice husk ash: a systematic review of its applications", 2021. International Journal of Current Research, 13, (06), 17706-17713.

INTRODUCTION

Nowadays agricultural waste has found widespread application in various fields. Due to low prices of these waste, it is very difficult to estimate the exact amount of these waste. There economic value are very low even lower than the cost of gathering, transportation and processing for various application. As per the report biomass is responsible for producing around 9% of global energy ie biomass used as fuel or get converted into solid fuel. Agricultural waste consists of harmful agricultural waste i.e. herbicide, insecticide and pesticide, fruit and vegetables, food processing waste etc. Rice husks is one of the major source of value added material towards utilization of waste and is directly responsible for cost reduction in various processing industries as well as domestic applications. In all the rice producing countries Rice Husk (RH) is easily and almost freely available, as it is by-product of the rice milling. Rice husk composition include around 16-25% of paddy (Giddel., 2007; Soltani, 2015). Every year more than 120 million tonnes of rice is produced in India, which contributes near to 24 million tones of Rice Husk every year

Assistant Professor (Chemistry), Faculty of Science, BSSS, Bhopal, Madhya Pradesh.

and it is found that this number is increasing day by day. Rice husk ash (RHA) is the one of the major by-product of rice husk burning. Rice husk ash is obtained when husk is burnt in ambient temperature and pressure condition. It has been reported that around 20 million tonnes ash is produced per year around the world (Soltani et al., 2015, Koteswara and Pranav, 2011).Handling of this Rice husk is a big problem because of its low density and less commercial interest. Transportation of this husk is also problematic, and its creates various problem related to its disposal and when it is burnt it field it creates serious environmental issue (Pode, 2016). Rice husk has very high value applications such as it is used in preparation of silica (silica gel as well as powder), zeolites, activated carbon, silicon nitride, porous carbon, silicon carbide, preparation of silicon chip and also making of light weight construction materials, insulations, preparation of green catalysts, important constituent for preparation of lithium batteries, energy capacitor, grapheme and carbon capture. It has various other important applications such as synthesis of silicones and it's alloys, synthesis of soluble silicate, synthesis of chemical based silicon, Filler for both natural as well as synthetic rubber (Pode,2016; Della et al., 2002; Naskarand Chatterjee, 2004; Sun and Tzong-Horng, 2004; Wang et al., 1998; Conradt et al., 1992; Mohamed et al., 2015). There is not much awareness regarding properties and uses of Rice husk and hence they are not utilized judicially.

^{*}Corresponding author: Dr. Vandana Yadav,

Rice husk and its ash are very useful for domestic as well as industrial purpose and its utilization for various application can serves as solution for its disposal. In the present review paper our focus concentrated on composition and relevant applications of RH in various sectors.

Composition of rice husk

The composition of rice husk is described in table 1

Table 1 Composition of Rice Husk

S.NO	COMPOSITION	%
1	Hemicelluloses	24.3%,
2	Lignin	19.2%
3	Cellulose	34.4%
4	Ash	18.85%
5	Trace elements.	3.25 %

Hemicelluloses is one of the major source of xylose ,activated carbon, and silicon dioxide. The % elemental composition of Rice husk include- Hydrogen 8.80%, Silicon 9.01%, Carbon 37.05%, Nitrogen 11.06%, and Oxygen 35.03% (Sarang *et al.*, 2009). Silica is 17-25% in husk (Real *et al.*, 1996, Conradt *et al.*, 1992).

Table 2. Other properties of RH (Muthadhi et al., 2007)

S.NO	COMPOSITION	%
1.	Bulk density	96-100kg/m ³
2	Hydrogen	4-5%
3	Ash	22.29%,
4	Sulphur	0.04-0.08%
5	Nitrogen	0.23-0.32%
6	Oxygen	31-37%
7	Hardness (Mohr's scale)	5-6

The composition of rice husk is affected by various factor such as different variety of rice, different type of fertilizer used for crop, geographic location of the area and soil structure of that region, and (Muntohar *et al.*, 2002).

Rice Husk Ash (RHA): Its Composition

Among all the Biomass fuels rice husk is high in ash content ie.14-25% .The amount of silica present in rice husk ash (RHA) range from 83-98% (Rozainee et al., 2008; Pode, 2016, Adam et al., 2006). Due to high content of silica, RHA is a valuable industrial material as it can be used for various industrial processes. X-ray fluorescence was used to determine chemical composition of RHA It was found to contain- SiO₂ 89%, Al₂O₃ 1.20%, C 18.24%, CaO 1%, K₂O 1.22%, Fe₂O₃ 1.28% The ash properties are affected by different factors such as rate of heating, incinerating conditions (which includes duration of heating and temperature), and different burning methods (Mohamed et al.2015; Mansaray Ghaly1999, Govindarao, 1980).

Rice Husk: Application: Rice husk has very different physical and chemical properties such as high silica and ash content, and therefore it find applications in various industrial and domestic processing. Most of review papers suggested and discussed that Rice husk can be used as fuel such as in parboiling process of rice, in furnaces, in brick kilns, and also it is very important raw material for the preparation of sodium silicate. It can also be used as polishing and cleaning agent for

metal, synthesis of molecular sieve (Shwetha *et al.*, 2014; Singh, 2000; Ugheoke *et al.*, 2006).

The important applications of Rice husk are as follows:

Source of fuel

Rice husk works as very good source of biofuel. The RH has calorific value around 15218.21 KJ/Kg. The performance of rice husk as fuel is comparable to that of traditional fuels. Hence RH is cheaper fuel than coal (Velupillai et al., 1997; Yadav and Singh,2011). The heat energy is generated when direct gasification and combustion of rice husk is done. It finds application several processes where heat energy is required such as steam generation in parboiling of rice (Prasara and Grant, 2011; Yadav and Singh, 2011; Shwetha et al., 2014). It can also be used for generation of electricity. For example 1 tone of RH produces around 1 MWH electricity. The RH also serve as substitute of traditional fuel for household energy (Rozainee et al., 2008). The following reaction is involved with rice husk as fuel with following reactant-(Monga et al,2015) 1 mole C, 0.3052 oxygen (O₂), 0.6402 moles hydrogen (H₂), as follows.

C+ + 0.3052 O₂(g) + 0.6402 H₂ (g) +2.0298 NiO = $CO_2(g)+0.6402$ H₂O(g) +2.0298 Ni

Major Source of silica as well as silicon based materials: Silica is the fundamental raw material that was widely used in many processes such as chromatography, adhesives, ceramics, vegetable oils and pharmaceuticals. Rice husk consist of high amount of silica, therefore it is a source for various silicon compounds such as Zeolites, silicon tetrachloride, silica, silicon nitride, silica, silicon carbide, and silicon(pure). It is also used for preparing a number of advanced engineering materials like elemental Si, Mg₂Si, Si₂N₂O, SiC, SiN, silanes (Karera *et al.*,1986; Acharya *et al.*,1980; Sun and Gong, 2001; Patil *et al.*,2014; Padhi and Patnaik, 1995; Soltani *et al.*,2014;). There is reaction between SiO₂ obtained from rice husk ash and NaOH is as follows (Della *et al.*, 2002).

 $ySiO_2 + 2xNaOH \rightarrow xNa_2O \cdot ySiO_2 + xH_2O$

The silica gel can be produced by neutralization of sodium silicate $(xNa_2O \cdot ySiO_2)$. The reaction is as follows (Real *et al.*, 1996)

 $xNa_2O \cdot ySiO_2 + xH_2SO4 \rightarrow ySiO_2 + xNa_2SO_4 + xH_2O$

It has been observed that SiC (Si-SiC) has also been prepared from powdered mixture of rice husk ash-C-Mg according to following reaction (Niyomwas,2009).

 $2SiO_2(s) + C(s) + 4(Mg) = Si(s) + SiC(s) + 4MgO$

The Silicon nitrate is produced by series of following reactions (Soltani *e tal.*, 2015)

$$SiO_{2}(s) + C(s)=SiO(g) + CO(g)$$

$$SiO_{2}(s) + CO(g)=SiO(g) + CO_{2}(g)$$

$$SiO(g) + 2/3N_2(g) = 1/3Si_3N_4(s) + \frac{1}{2}O_2(g)$$

The amorphous SiO_2 can be reduced to form silicon as shown in the reactions (Bose*et al.*, 1993)

 $SiO_2 + 2Mg = Si + 2MgO + SiO_2$ (unreacted)

As Organic fertilizer: In the present changing environment, organic fertilizers are need of the hour in agriculture process. Rice Husk is being used as major source of an organic fertilizer. These fertilizers improve productivity and also increase water efficiency of the agricultural field (Badar and Qureshi, 2014; Ebaid, et al., 2007; Govindarao 1980). Studies suggested that rice husk is used to improve absorption of various macro and micro elements such as nitrogen and other important nutrients which are directly responsible for increasing the efficiency of production and translocation of the dry matter content to agricultural field (Ebaid, et al., 2007; El-Wehishy and El-Hafez, 1997; Awad, 2001; El-Refaee et al., 2006;). Further, the Rice Husk is also a potential source of potassium which is important for growth and yield of cow pea (Seran, Priyadharshini,2010). Conversion of rice husk into fertilizers is done through vermi-composting (Shak et al., 2014; Lim et al., 2012;).

As source of Fiber: Dietary and food: Right from the ancient times rice husk has been used as an important constituent in ruminant and poultry (Aderolu *et al.*, 2007; Shqueir *et al.*, 1989; Aderolu *et al.*, 2004). Rice husk consist of around 30% dietary fiber. It is used in food industry as it is rich in protein and minerals. The Enzymatic extraction of rice husk produces more fiber than any other chemical method (33.97% vs.67.53%)

 $CO_2 + C = 2CO$

Used as an Adsorbent: The rice husk is insoluble in water due to high silica content, it also have effective chemical stability due to its structure (Lee *et al.*, 1994).Therefore it finds application in the purification of water and treatment of waste water. Rice husk sorbent can effectively remove various heavy metals such as Manganese, Iron, Lead, Copper, Cadmium (Yalcın and Sevin, 2000; Daifullah *et al.*, 2003; Munaf 2010). It also work as good adsorbent to remove different type of heavy metals, pollutants, dyes, pesticides, phenols, inorganic anions and organic compounds (Gupta *et al.*, 2006; Chauh *et al.*, 2005; Lata and Samadder, 2014).

In Synthesis of bio-ethanol: Rice husk is used for the synthesis of Bioethanol which is solution to many problems such as energy, environment, economic faced by the world (Saha and Cotta, 2007; Srivastava, 2014). The Bio-ethanol can satisfy about one fifth of the global bio-fuel demand. The global potential level production of bio-ethanol is around 20.9 to GL per annum from RH (Nyachaka *et al.*, 2013).

Other uses

-) SiO₂/C composites from RH are highly porous and designed by heating pellets composed of RH powders in different sizes (Warati *et al.*, 2006).
-) Used in adsorption of direct dyes from aqueous solution (Wahabet al., 2005).
-) RH has good binding property, which decreases the formation of cracks in the material. Therefore it is utilized for synthesis of pottery products especially biodegradable (Ammara *et al.*, 2012).

) RH has been used as important ingredient for making building materials, panel board, fillers in plastics, insulating board material, filling material, (Farooquea *et al.*, 2009).

Application of Rice Husk Ash (RHA): RHA is a valuable raw material for various industrial as well synthesis applications such as Polymer industry, adsorbent and heterogeneous catalysts, refractory industry, ceramic applications, cement industry, fillers of rubber, plastic composites, (Sevdalina *et al.*, 2012). Some of the other important industrial and domestic applications of RHA are discussed below:

Used as silica source: It has been noted that the presence of silica in rice husk has been known since long time around the world (Martin, 1938). Silica was a basic material that was widely used in different ways like chromatography column, adhesives, ceramics, pharmaceuticals etc. Rice husk ash (RHA) contained over 60% silica and it is economically feasible raw material for preparing silica gels as well as powder. RHA has become a major source for synthesis of silica (Patil et al., 2014; Supakorn et al., 2009; Shelke et al., 2010; Della et al., 2002; Supitcha et al., 2009; Singh et al., 2008). Precipitated silica can be widely utilised in many of the industries such as tyre industry, cosmetics, electronics, ceramic, polymer material, paint industry, food industry, thickening agent in paints, reinforcing agent in rubber, thermal insulators, thyrotrophic agents, in toothpastes as a cleansing agent and composite-fillers (Rama-Rao et al., 1989; Dongmin et al., 2010). Some researchers have also prepared mesoporous and zeolites silica from rice husk ash. In recent studies sodium met silicate has been prepared by green and low cost method.

In Building materials (Cement and Concrete Industries): Among all the agricultural waste, rice husk ash is having highest percentage of silica and is considered as pozzolanic material. Pozzolanas are considered as siliceous and aluminous materials and possess no cementations property in itself. Rice husk ash is used as filler to enhance strength of concrete blocks (Cisse, and Laquerbe, 2000). As a replacement of Portland cement Lime pozzolana mixes with RHA are used (Mehta, 1977; Zhang et al., 1996; Nicole et al., 2000; Kartini, 2011; Ganesan et al., 2008; Xu et al., 2014). It has been observed that with the use of Rice Husk ash along with concrete increase compressive strngth, reduced permeability and the improved flexural strengths (Ganesan et al., 2007; Zhang et al., 1996; Ismaila, 1996;). Rice husk ash can also provide increased resistance to chemical attack, increased workability as well as durability of concrete material. (Coutinho, 2002)

As Filler in Polymer: RHA has been successfully utilized as filler in the various polymers such as polypropylene (Ismail,2002; Fuad *et al.*, 1995; Prema lal *et al.*, 2002;), polyethylene (Pantha pulakkal *et al.*, 2005; Cisse and Laquerbe, 2000), polystyrene (Ismail, 2003). Thermal degraded products of rice husk are often used as fillers in many polymers (Choi *et al.*, 2006; Saheb and Jog,1999), and polymeric composites (Prema lal *et al.*, 2003; Nassar *et al.*, 2007), paper, paint (Chandrasekhar *et al.*, 2003) etc.

Vulcanization of Rubber: As an Additive: Addition of RHA as an additive with other coupling agents in natural rubber improves its mechanical properties. The presence of coupling agent in rubber as well as composites increase the mechanical

and physical strength, filler dispersion as well as crosslink density (Araya pranee *et al.*, 2005; Ismail *et al.*,2001; Siriwandena *et al.*, 2001;).This is also very good fillers for various epoxidized natural rubber compounds (Mehta *et al.*, 1995).

Synthesis of Refractory bricks: As compared to conventional clay bricks, the bricks prepared by mixing of rice husk ash (mixture bricks), have greater compressive strength. (Rahman 1988; Amin *et al.*, 2013).

Insect Pest Controller in stored foodstuffs: RHA is found to be effective in controlling the effect of insects and pests in stored food stuffs. Rice husk ash has been successfully used against *Callosobruchusmaculatus* (F) and *Sitophiluszeamais* (Mots) (Shazia *et al.*, 2006, Adebayo and Ibikunle,2014, Paneru and Shivakoti, 2000/2001). Rice husk ash has been found to be effective as an oil spill absorbent in water-proofing chemicals, as good flame retardants, and also carry insecticides and pesticides (Kumar *et al.*, 2012). It is reported that rice husk ash (RHA) is effective in keeping stored potatoes free from potato tuber moth (*Phthorimaeaoperculelle*) for around five months of storage.

In the water purification: In the present time of industrialization the contamination of water is a serious issue. Presence of Arsenic in drinking water is becoming a main health issue in today's scenario and more than 100 million people across the nation are suffering with the ill effect of drinking contaminated water. The removal of arsenic with the use of RHA as an adsorbent has been reported by various researchers (Malhotra et al., 2013; Saha et al., 2002; Adams Bhagavanulu, 2015). RHA is very effective adsorbent for the adsorption of various heavy metal such as lead, mercury from aqueous water (Feng et al., 2004). It has also been found effective in removing Methylene blue, humic acid from waste water (Sharma et al., 2010; Imyim et al., 2010). As silica is the main constituent in rice husk ash, the ion- exchange reaction occurs on surface of silica with the substitution of protons by the metal ions as shown in the following reaction (Masoud et al., 2012)

 $xM^{+n} + x(=SiOH)^{(n-x)} + xH^{+}$

 M^{n+} = metal ion with n⁺charge SiOH=group Silanol on the SiO₂ surface. xH^+ =number of protons released during the reaction

Ceramic Industries: RHA used in ceramic glazes (Bondioli *et al.*, 2010). Rice husk ash is an important ingredient in synthesis of (Zr, Pr) SiO₄ pigment, Si₂N₂O, Si₃N₄ and SiC, mullite (3Al₂O₃·2SiO₂), SiO₂ porous ceramic materials, cordierite ceramics (Chen *et al.*, 2014; Serra *et al.*, 2015; Bondioli *et al.*, 2007; Padhi and Patnaik, 1995)

Synthesis of Nano-particles: RHA has been found to be efficiently and effectively used in preparation of silica nanoparticles through green and eco-friendly route (Premaratne *et al.*, 2013; Thuadaij and Nuntiya, 2008; Sankar *et al.*, 2016). It is also investigated that SiO₂ and SiC nano wires, and SiO₂/CaCO₃ nanocomposite can be successfully synthesized from RHA (Morsy *et al.*, 2014; Pukird *et al.*, 2009). Nanosilica has been successfully synthesised from solution of sodium silicate by precipitation method according to following reaction: SiO₂ (Ash)+2NaOH(Caustic soda) \rightarrow Na₂SiO₃(Sodium silicate)+H₂O(Water)

The silica particles were also prepared by using sodium silicate by using sulfuric acid as catalyst by the following reaction (Rafiee *et al.*, 2012).

 $Na_2SiO_3+H_2SO_4\rightarrow SiO_2+Na_2SO_4+H_2O.$

Silica nano-particles(SNPs) are usually utilized for different types of applications such as industrial manufacturing, packaging, composite of ceramic, drug delivery, biosensing, adsorption, and also as catalyst for various processes (Ghorbani *et al.*, 2015).

In Renewable energy: Biodiesel are one of the green alternative energy sources which is produced from either biological or natural resources which include agricultural and food waste. It has been found that its physical and chemical properties are similar with diesel oil without any modification in engine (de mello *et al.*, 2017).Biodiesel has many benefits such as cheapness, non-toxic, biodegradability and eco-friendly (Taufiq-yap *et al.*, 2017)

Other important uses: RHA is also found to be an effective use as pigment extender in emulsion paints (Ossi and Dilim,2015, Igwebike-Ossi and Dilim,2014).RHA being a siliceous material, it is also used as sorbents for desulfurization process in small-scale industrial boilers. It has been found that RHA also successful in marine diesels pill clean-up (Dahlan et al., 2006; Bazargan et al., 2014). Further, this also discover that it very effective oil absorbent for absorption of vacuum pump oil. It also purify biodiesel from waste frying oil (Tatum and Winter, 1997; Chou et al., 2001; Maniqueet al., 2012). A novel and low cost application of RHA is utilization in pre concentration of gold (Nakbanpote et al., 2000; Nakbanpote et al., 2002). Silica extracted from RHA is a successful corrosion inhibitor for carbon steel (Awizaret al., 2013). In many developing countries, it is regularly used for reduce the fatty acid content from frying oils (Chou et al., 2007).

Conclusion

Rice husk and rice husk ash is an agricultural waste which is freely available at a nominal price. With the development of new research methods, systematic and potential application of RH and RHA for manufacturing new materials could solve many issues related to its disposal and burning in field which is responsible for pollution. This process could bring economic feasibility in waste treatments. Presence of more amount of silica content in RH as compared to other agricultural waste provide an opportunity to explore direct and indirect applications in different field, which makes it an important market value product and can give a good economic return to the producer. Effective application of RH in fuel/electricity generation, bioethanol production provides an opportunity to transfer agriculture waste product to valuable/ renewable energy source for various industries. Rice husk ash is considered to be promising as Pozzolanic material and also as an adsorbent. Synthesis of silica nano-particles and their application in various fields and industries makes it an important raw material for nanotechnology. The use of agriculture waste as a source of renewable and sustainable energy source has a great potential as low-cost raw material for production of various valuable material. Sustainable use of rice

husk and its ash could help in increasing agricultural economy and can also contribute towards rural development of our country.

REFERENCES

- Abbas, A., and Ansumali, S. 2010. Global potential of rice husk as a renewable feed stock for ethanol biofuel production. Bio Energy Research. 3(4):328-334.
- Acharya, H. N., S. K. Dutta and Banerjee, H. D.1980. Production of magnesium silicide and silane from rice husk ash. Solar Energy Materials. 3(3):441-443.
- Adam, F., S. Balakrishnan and Wong, P. 2006. Rice husk ash silica as a support material for ruthenium based heterogeneous catalyst. Journal of Physical Science.17(2):1-13.
- Adebayo, R. A., and Ibikunle, O. 2014. Potentials of rice husk ash, cow dung ash and powdered clay as grain protectants against *Callosobruchusmaculatus*(F) and *Sitophiluszeamais* (Mots). Applied Tropical Agriculture. 19 (1):48-53
- Aderolu, A. Z., E. A. Iyayi and Onilude, A. A. 2007. Changes in nutritional value of rice husk during *Trichodermaviride* degradation. Bulgarian Journal of AgriculturalScience.13(5):583-589
- Aderolu, A. Z., E. A. Iyay, A. A.Onilude and Eniola 2004. Biodegraded rice husks in laying bird's diet: 1. Performance and egg quality parameters. Live stock Research for Rural Development 16 (1): 1-5
- Alvarez, J.G., Lopez, M. Amutio, J. Bilbao and Olazar M. 2015. Physical activation of ricehusk pyrolysis char for the production of highsurface area activated carbons. Industrial and Engineering Chemistry Research. 54(1): 7241-7250
- Ammara, S., A. Fakhraand Amber A. 2014. Processing of rice and wheat husk for the potential utilization of the material for pottery products. International Research Journal of Environment Sciences. 3 (1): 7-14
- Araya pranee, W.,N. Na-Ranong, L. Garry, and Rempel.2005. Application of rice husk ash as fillers in the natural rubber industry. Journal of Applied Polymer Science 98 (1): 34-41.
- Attharangsan, S., H. Ismail, M. Abu Bakar, J. Ismail.2012. Carbon black (CB)/ rice husk powder (RHP) hybrid fillerfilled natural rubber composites: effect of cb/rhp ratio on property of the composites. Polymer-Plastics Technology andEngineering.51(7):655-662.
- Awizar, D. A.,N. K. Othman, A. Jalar, A. K. Daud, A. Rahmanand Al-hardan, N.H.2013.Nano silicate extraction from rice husk ash as green corrosion inhibitor. International Journal of Electrochemical Science. 8 (2): 1759–1769.
- Badar, R., and Qureshi, S. A. 2014. Composted ricehusk improves the growth and bio chemical parameters of sunflower plants. Journal of Botany. 2014: 1-6.
- Bazargan, A., J. Tan, C. W. Hui and Mckay, G. 2014. Utilization of rice husks for the production of oil sorbent materials. Cellulose. 21 (3): 1679-1688
- Bhagavanulu D. V. S., 2008. Effect of different ashes on the properties of turbid water. International Research Journal of Engineering and Technology. 2(1): 327
- Bining, A. S., and Jenkins, B. M. 1992. Thermo-chemical reaction kinetics for rice straw froman approximate

integral technique. American Society of Agricultural Engineers. Meeting (USA).No. 92-6001/92-6040

- Bondioli,F., L. Barbieri, A. M. Ferrariand Manfredini, T. 2010. Characterization of rice husk ash and its recycling as quartz substitute for the production of ceramic glazes. Journal of the American Ceramic Society. 93(1): 121-126
- Bose, S. H., and Banerjee, A. H. 1993.Electrocal,thermal, thermoelectric and related properties of magnesium silicide semiconductor prepared from rice husk. Journal of Material Science.28(20):5461-5468.
- Chandrasekhar, S., K. G. Satyanarayana, P. N. Pramada, P. Raghavanand Gupta, T. N. 2003. Processing, properties and applications of reactive silica from rice husk-an overview. Journal of Materials Science. 38 (15) : 3159-3168.
- Chandrasekhar, S., P. N. Pramada and Praveen, L. 2005. Effect of organic acid treatment on the properties of rice husk silica. Journal of Materials Science. 40(24): 6535-6544.
- Chang, F. W., T. J. Hsiao and Shih, J. D. 1998. Hydrogenation of CO_2 over a rice husk ash supported nickel catalyst prepared by deposition precipitation. Industrial and Engineering Chemistry Research. 37 (10): 3838-3845.
- Choi, N.W.,I .Moriand Ohama Y.2006.Development of rice husk-plastics composites for building materials. Waste Management. 26 (2):189-194.
- Chou, K.S., Tsai, J. Cand LoC. T.2001. The adsorption of Congo red and vacuum pumpoil by rice hull ash. Bioresource Technology. 78(2):217-219.
- Chuah, T. G., A. Jumasiah, I. Azni, S. Katayonand Thomas, C. S. Y. 2005.Rice husk ash a potentially low-cost biosorbent for heavy metal and dye removal : an overview. Desalination. 175 (3): 305-316
- Cisse, I.K., and Laquerbe, M. 2000. Mechanical characterization of fillers and concretes with RHA additions: study applied to senegal. Cement and Concrete Research. 30 (1): 13-8.
- Conradt, R., Pimkhaokham, P. and Leela-Adisorn,
- U. 1992. Nanostructured silica from rice husk. Journal of Non-Crystalline Solids. 145:75-79
- Coutinho, J. S., 2002. The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement and Concrete Composites. 25(1): 51-59.
- Dahlan, I., K. T. Lee, A. H. Kamaruddinand Mohamed, A. R. 2006. Key factor in rice husk ash/ cao sorbent for high flue gas desulfurization activity. Environmental Science and Technology. 40 (19): 6032–6037.
- Daifullah, A. A. M., B. S. Girgis and Gad H. M. H.2003. Utilization of agro-residues (rice husk) in small waste water treatment plans. Materials Letters. 57(11):1723-1731
- Daifullah, A. A. M., N. S. Awwadand El-Reefy S. A. 2004. Purification of wet phosphoric acid from ferric ions using modified rice husk. Chemical Engineering and Processing: Process Intensification.43(2):193-201
- Das, G.P.,and Rahman,M.M.1997.Effect of some inert materials and insecticides against the potato tuber moth, *Phthorimaeaoperculella* in storage. International Journal of Pest Management. 43(3):247-248.
- Della, V. P., I. Kuhn and Hotza, D. 2002. Rice husk ash as an alternate source for active silica production. Materials Letters. 57(4):818-821.
- Dongmin, A., Y. Guo, Y. Zhuand Wang, Z.A. 2010. Green route to preparation of silica Powders with rice husk ash and waste gas. Chemical Engineering Journal. 162(2):509-514.

- Ebaid, R. A., El-Hessiwy and El-Dalil, M.2005.Preliminary study on utilization of rice husk in rice cultivation. Egypt. Journal of AgriculturalResearch.3:369-376.
- Ebaid, R. A., and El-Refaee I. S. 2007. Utilization of rice husk as an organic fertilizer to improve productivity and water use efficiency in rice fields. African Crop Science Conference Proceedings. 81:923-1928.
- El-Refaee, I. S., R. A. Ebaid and El-Rewiny, I. M.2006. Performance of rice (*Oryza sativa* L.) plant under different water regime sand methods of planting. Alexandria Journal of Agricultural Research. 51 (2) :47-55.
- El-Weheishy, M, and Abd El-Hafez. A.G. 997. Response of flooded rice to water deficit. Journal of Agricultural Research Tanta University 23: 273-288.
- Fadaei, V., and Salehifar, M. 2012. Rice husk as asource of dietary fiber. Annals of Biological Research. 3: 1437-1442.
- Farooquea, K. N. M., Zamana, M. Halimb, S. Islama, M. Hossaina, Y. A. Mollah band Mahmood, A. J. 2009. Characterization and utilization of rice husk ash (RHA) from rice mill of Bangladesh. Bangladesh Journal of Scientific and Industrial Research. 44(2):157-162.
- Ganesan, K., K. Rajagopaland Thangavel, K. 2008.Rice husk ash blended cement: assessment ofoptimal level of replacement for strength and permeability properties of concrete. Construction and Building Materials. 22(8):1 675-1683
- Ghorbani, F., Sanati, A. M. and Maleki, M. 2015. Production of silica nanoparticles from ricehusk as agricultural waste by environmental friendly technique. Environmental Studies of Persian Gulf. 2:56-65
- Giddel, M. R.,andJivan, A.P.2007. Waste to wealth, potential of rice husk in India literature review. International Conference on Cleaner Technologies and Environmental Management PEC pp586-590
- Govindarao, V. M., 1980. Utilization of rice husk. A preliminary analysis. Journal of Scientific and Industrial Research. 39(9):495-515
- Gupta, V. K., Mittal, A. Jain, R. M. Mathur and Sikarwar, S.2006. Adsorption of Safranin-Tash, lime and gypsum- an experimental study. International Journal of Engineering Science and Technology. 3 (11): 8076-8085.
- Krishnarao, R.V., and Godkhindi M.M.1992. Effect of Si₃N₄ additions on the formation of SiC whiskers from rice husks. Ceramics International. 18(3):185-191
- Kumar, A., K. Mohant, D. Kumar and Parkash, O. 2012.Properties and industrial applications of rice husk a review. International Journal of Emerging Technology and Advanced Engineering.10:2250-2459.
- Kumar,V.S., Sinha,M. S. Saini, B. K. Kanungo and Biswas, P. 2010. Rice husk as reinforcing filler in polypropylene composites. Reviews in Chemical Engineering. 26 (1-2):41-53.
- Lata, S., and Samadder, R. 2014. Removal of heavy metals using rice husk: a review. International Journal of Environmental Research and Development. 4:165-170
- Lee, C. K., K. S. Low, S. C. Liew and Choo, C. S. 1999.Removal of arsenic (V) from aqueus solution by quaternized rice husk. Environmental Technology. 20 (9):971-978.
- Lennox, R.,and Mackenzie, M. 2008. Eco-roadbuilding for emerging economies: An initialscan for promising alternative technologies. pp 1-19

- Lim,S. L., T. Y. Wu, E. Y. Sim, P. N. Limand Clarke, C. 2012. Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecological Engineering. 41:60-64
- Lyenagbe, B., Ugheoke and Othman, M. 2012. A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo international journal of science and technology. 6(3): 430-448.
- Malhotra, C., R. Patil, S. Kausley and Ahmad, D.2013. Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications. AIP Conference Proceeding
- Malik, S., and Arora, B. 2015. Effect of fly ash and rice husk ash on the properties of burnt clay bricks. International Journal of Innovative Research in Computer Science and Technology.
- Manique, M. C., C. S. Faccini, B. Onorevoli, E. V. Benvenutti and Caramao, E. B. 2012. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil.Fuel.92(1):56-61.
- Mansaray,K.G.,andGhaly,A.E.1999.Thermaldegradationofriceh usksinanoxygenatmosphere.Energy Sources.21(5): 453-466.Mehta,A.,and Ugwekar,R. P.2015.Extraction of silica and other related products from rice husk. Internationl Journal of Engineering Research and Applications. 5:43-48
- Mehta, P. K., 1977. Properties of blended cements made from rice husk ash. Journal Proceedings.74(9):440-442.
- Mehta, P. K., and Haxo, H. E. 1975.Ground rice-hull ash as filler for rubber.Rubber Chemistry and Technology. 48(2):271-287.
- Mohamed, R. M., I. A. M khalid and Barakat, M. A. 2015. Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arabian Journal of Chemistry. 8(1):48-53.
- Monga, R. S., G. R. Kale and Guhe, S. Y. 2015. Chemical looping combustion of rice husk. International Journal of Engineering Research and Applications. 5(5):132-138.
- More,A.S.,A.TaradeandAnant,A.2014.Assessment of suitability of fly ash and rice husk ash burnt clay bricks. International Journal of Scientific and Research Publications. 4(7): 1-6
- Morsy, F.A., S. M. El-Sheikhand Barhoum, A. 2014. Nanosilica and SiO₂/ CaCO₃ nanocomposite prepared from semi-burned rice straw ash as modified paper making fillers. Arabian Journal of Chemistry.
- Munaf, E., and Zein, R. 2010. The use of rice husk for removal of toxic metals from waste water. Environmental Technology.18(3):359-362.
- Muntohar, A. S., 2002. Utilization of uncontrolled burnt rice husk ash in soil improvement .DimensiTeknik Sipil. 4(2):100-105.
- Muthadhi, A., Anitha, R.and. Kothandaraman, S.2007. Rice husk ash properties and its uses: a review. Journal of the Institution of Engineers. 88(5):50-56.
- Nakbanpote, W., P.Thiravety anand Kalambaheti, C. 2000. Pre concentration of gold by rice husk ash. Mining engineering.13(4):391-400.
- Nakbanpote, W., P. Thiravety anand Kalambaheti, C. 2002. Comparison of gold adsorption by Chlorella vulgaris, rice husk and activated carbon. Minerals Engineering.15(7):549-552.
- Naskar, M. K., and Chatterjee, M.2004.A novel process for the synthesis of cordierite (Mg₂Al₄Si₅O₁₈) powders from rice husk ash and other sources of silica and their comparative

study. Journal of the European Ceramic Society. 24(13):3499-3508.

- Nassar, M. A., 2007. Composites from sawdust-rice husk fibers.Polymer-Plastics Technology and Engineering. 45(5): 441-446.
- Niyomwas, S., 2009. Synthesis and characterization of siliconsilicon carbide composites from rice husk ash via selfpropagating high temperature synthesis, Journal Metals Material and Minerals. 19(2):21-25.
- Nyachaka, C. J., D. S. Yawas and Pam, G. Y. 2013.Bio-ethanol production from rice husk and performance test of petrol and bioethanol blends in a spark ignition engine. International Journal of Engineering Research and Technology. 2:1-6
- Ossi, I.,and Dilim,C.2015.Pigment extender properties of rice husk ash in emulsion paint.International Journal of Innovative Researchin Science, Engineering and Technology 4:6821-6829.
- Padhi, B. K., and Patnaik, C.1995. Development of Si_2N_2O , Si_3N_4 and SiC ceramic materials using rice husk. Ceramics International.21(3):213-220
- Paneru, R. B., and Shivakoti, G. P. 2000/2001. Use of botanicals for the management of pulse beetle (*Callosobruchusmaculatus*F.) in lentil. Nepal Agriculture Research.4&5: 27-30.
- Panthapulakkal, S., S.Lawand Sain, M. 2005.Enhancement of process ability of rice husk filled high-density polyethylene composite profiles. Journal of Thermoplastic Composite Materials.18(5):445-458.
- Patel, M., A. Karera and P. Prasanna 1987.Effect of thermal and chemical treatment on carbon and silica contents in rice husk. Journal of Material Science. 22(7):2457-2464
- Patil,R.,R. Dongre and Meshram, J .2014.Preparation of silica powder from rice husk. Journal of Applied Chemistry. 27:26-29.
- Pode, R., 2016. Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews. 53:1468-1485
- Prasara, A.J., and Grant, T. 2011. Comparative life cycle assessment of uses of rice husk for energy purposes. International Journal of Life Cycle Assessment 16(6):493-502
- Premalal, H. G. B., Ismail, H. and Baharin, A. 2003.Effect of processing time on the tensile,morphological and thermal properties of rice husk powder-filled polypropylene composites.Polymer-Plastics Technology Engineering. 42(5):827-851.
- Premalal, H. G., H. Ismail and Baharin, A. 2002.Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing. 21(7):833-

839.

- Priyadharshini, J., and Seran, T., 2010. Paddy husk ash as a source of potassium for growth and yield of cowpea (*VignaunguiculataL.*) Journal of Agricultural Sciences. 4(2):67-76.
- Pukird, S., P. Chamninok, S. Samran, P. Kasia, K.Noipaand Chow,L.2009. Synthesis and characterization of SiO₂ nanowires prepared from rice husk ash. Journal of metals, materials and minerals. 19(2):33-37.
- Rafiee, E., S. Shahebrahimi, M. Feyzi, and Shaterzadeh, M. 2012. Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). International Nano Letters. 2(1):29-37.

- Rahman, I. A., B. Saad, S. Shaidanand Sya Rizal, E. S. 2005. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical thermal process. Bioresource Technology. 96(14):1578-1583.
- Rahman, M.A., 1988. Effect of rice husk ash on the properties of bricks made from fired later it is soil-clay mix. Materials and Structures. 21(3):222-227.
- Rama- Rao, G., A. R. K. Sastry and Rohatgi, P. K. 1989.Nature and reactivity of silica available in rice husk and its ashes. Journal of Materials Science. 12(5):469-479.
- Real, C. M., Alcalaand J.M.Criado1996.Preparation of silica from rice husks. Journal of the American Ceramic Society. 79(8): 2012-2016.
- Rozainee, M., S. P. Ngo, A. A. Salema, K. G. Tan, M. Ariffin and Zainura, Z. N. 2008. Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidized bed combustor for the production of amorphous rice husk ash. Bioresource Technology. 99(4):703-713.
- Saha, B. C., and Cotta,M.A.2007.Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme and Microbial Technology.41(4):528– 532
- Sarang, M.,S. Bhattacharyya and Behera, R. C. 2009. Rice effect of temperature on morphology and phase transformations of nanocrystalline silica obtained from rice husk. Phase transitions: a multinational journal. 82(5):377-386.
- Serra, M. F., M. S. Conconi, M. R.Gauna, G. Suarez, E. F. Aglietti and Rendtorff, N. M. 2016. Mullite (3Al₂O₃·2SiO₂) ceramics obtained by reactions intering of rice husk ash and alumina, phase evolution, sintering and microstructure. Journal of Asian CeramicSocieties.4(1):61-6
- Sevdalina, T.,G. Svetlana and Lyubomir.2012.Obtaining some polymer composites filled with rice husks ash-a review. International Journal of Chemistry. 4(4):62-89.
- Shak, K. P. Y, T. Y., Wu, S .L .Limand Lee, A. C.2014. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production. Environmental Science and Pollution Research.21(2):1349-1359.
- Sharma, P., Kaur, R., Chinnappan, B. and Chung, W. J. 2010. Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259(1):249-257
- Shazia, O. W. M. R., M. Masunga, R. Makundi, R. N. Misangu, B. Kilonzo, M. Mwatawala, H.F. Lyimo, C. G. Ishengoma, D. G. Msuya and Mulungu,L.S.2006.Control of cow peaweevil(*Callosobruchus maculatesL.*) in Stored Cowpea(*VignaunguiculatusL.*) grains using botanicals. Asian Journal of Plant Sciences. 5:91-97
- Shelke, V. R., S. S. Bhagade and Mandavgane, S. A.2010.Mesoporous silica from rice husk ash. Bulletin of Chemical Reaction Engineering and Catalysis 5(2):63-67.
- Shqueir, A. A., Brown, D. L. and Klasing, K . C.,1989. Canavanine content and toxicity of Sesbania leaf meal for growing chicks. Animal Feed Science Technology.25(1-2):137.
- Shwetha, M. K., H. M. Geethanjali and Chowdary K. 2014. A great opportunity in prospective management of rice husk. International Journal of Commerce and Business Management. 7(1):176-180.
- Singh, D., R. Kumar, A. Kumar and Rai, K. N.2008. Synthesis and characterization of rice husk silica, silica carbon

composite and H_3PO_4 activated silica.Ceramica.54(330):203-212.

Singh, T., 2000. The tribune, online edition. Chandigarh, India.

- Soltan, N., A.Bahrami, M. I. Pech-Canuland Gonzalez, L. A. 2015. Review on the physicochemical treatments of rice husk forproduction of advanced materials. Chemical Engineering Journal. 264:899-935
- Soltani, N.,Bahrami A,Pech-Canul MI and Gonzalez LA.2015.Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical EngineeringJournal.264:899-935.
- Srivastava, A. K., P. Agrawal and Rahiman, A. 2014.Delignification of rice husk and production of bioethanol. International Journal of Innovative Research in Science, Engineering and Technology. 3(3):10187-10194.
- Sun, L., and Gong, K. 2001. Silicon-based materials from rice husks and their applications. Industrial & Engineering Chemistry Research. 40 (25):5861–5877.
- Supakorn, P., C. Pattanasuk S. Supon, K. Pristanuch, N. Kiattisak and Lee, C. 2009. Synthesis and characterization of SiO₂ nanowires prepared from rice husk ash. Journal of Metals, Materials and Minerals.19(2):33-37.
- Supitcha, R., Wachira, P. and Natthapong, S. 2009.Preparation of silica gel from rice husk ashusing microwave heating. Journal of Metals, Materials and Minerals.19(2):45-50.
- Sutas, J., A. Mana and L. Pitak 2012.Effect of rice husk and rice husk ash to properties of bricks. Procedia Engineering 32:1061-1067.
- Tatum, N., and Winter, N. 1997. Rice hull ash as a potting substrate for bedding plants. Southern Nursery Association conference pp121-122.
- Tongpoothorn, W., M. Sriuttha, P.Homchan,S.Chanthai and Ruangviriyachai,C.2011.Preparation of activated carbon derived from *Jatrophacurcas* fruit shell by simple thermochemical activation and characterization of their physicochemical properties. Chemical Engineering Research and Design 89(3): 335- 340.
- Tzong-Horng, L., 2004. Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon 42(4): 785-794.
- Ugheoke, B. M., E. O. Onche, O. N. Namessan and Asikpo, G. A. 2006. Property optimization of Kaolin-rice husk insulating fire bricks. Journal of Practices and Technologies. 9:167-178

- Van, K. L. and Thi, T. T. L. 2014. Activated carbon derived from rice husk by NaOH activation and its application in super capacitor. Material International 24(3):191-198
- Velupillai, L., D. B. Mahin, J. W. Warshaw and Wailes, E. J. 1997.A study of the market forrice husk-to-energy systems and equipment, Louisiana State University, Baton Rouge, Louisiana, USA.
- Wahab,O. A., A. E. Nemr, A. E. Sikaily and Khaled, A. 2005. Use of rice husk for adsorption of direct dyes from aqueous solution: a case study of direct F. Scarlet. Egyptian Journal of Aquatic Research 31(1): 1110-0354.
- Wang, H. P., K. S. Lin, Y.J.Huang, M. C. Li, and Tsaur, L. K.1998. Synthesis of zeolite ZSM-
- 48 from rice husk ash. Journal of Hazardous Materials 58(1):147-152.
- Watari, T., A. Nakata, Y.Kiba, T. Torikaiand Yadav, M. 2006. Fabrication of porous SiO₂/composite from rice husks. European Ceramic Society. 26(4): 797–801.
- Watile, R. K., S. K. Deshmukh, P. V. Durge and Yawale, A. D. 2015. Utilization of rice husk for production of clay brick. International Journal of Research in Advent Technology. 1st International Conference on Advent Trends in Engineering, Science and Technology "ICATEST2015" pp199-203
- Wu, M., Q. Zha, J. Qiu, Y. Guo and Shang, H. 2004. Preparation and characterization of porous carbons from PAN-based preoxidized cloth by KOH activation. Carbon42(1):205-210.
- Xu,H., B. Gao, H. Cao, X. Chen, L. Yu ,K. Wu ,L. Sun, X. Peng and Fu, J. 2014.Nano porous activated carbon derived from rice husk for high performance super capacitor. Journal of Nanomaterials 2014:1-7
- Yadav, J. P., and Singh, B. R. 2011.Study on comparison of boiler efficiency using husk and coal as fuel in rice mill. SAMRIDDHI-A Journal of Physical Sciences, Engineering and Technology. 2:2229-7111
- Yalcin,N.,andSevinc,V.2000.Studiesofthesurface area and porosity of activated carbons prepared from rice husks. Carbon 38 (14):1943-1945.
- Zhang, M. H., R. Lastra and Malhotra, V. M. 1996.Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cement and Concrete Research. 26(6):963-977.
- Zurina, M., H. Ismail, A. A.Bakar 2004. Partial replacement of silica by rice husk powder in polystyrene-styrene butadiene rubber blends. Journalof Reinforced Plastics and Composites .23(13):1397-1408
