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ARTICLE INFO  ABSTRACT 
 

 
 
 

In this paper we have defined a new class of operators T on a Hilbert space H for which T +T* and  
T*T + T T*commute where T* stands  for adjoint  of T. This operator will be called quasi  M normal 

 operators. 
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INTRODUCTION 
 
Definition and Notation 
 

•If T1 & T2 be two operators on Hilbert space H then we 
define  

 
 [T1, T2] = T1 T2 –T2 T1 

 
 We say that T1 and T2 commute if [ T1 , T2 ] = 0 
 Ie iff T 1 T2 –T2 T1 = 0 ie T1 T2 = T2 T1 

 
• Self adjoint operator:- We say that an operator T  on 

a Hilbert space H is self adjoint if T  = T* 
• Normal operator:- An op erator T on a Hilbert space 

H is called a normal operator if T  T* = T* T 
• Quasi Normal Operator:- An Operator T on a 

Hilbert space H is said to b e quasi normal operator 
if  

 
[T, T * T ] = 0 ie T T * T = T* T T  
 

• Bi normal Operator:- An operator T on a Hilbert  
space H is said to be a binormal operator i f T T* 
and T* T commute ie  [ T T*, T* T ] = 0  

 ie T* T T T* = T T* T* T 

 
 
 
 
• Quasi M normal Operator:- An operator T on a Hilbert  

space H is said to be a quasi M normal operator if T  + T* 
and T* T  + T T * commute. Where T* stands for adjoint  
of T  

 
Ie [ T + T*, T* T + T T* ] = 0 
Ie [ T + T*][ T* T + T T* ] = [ T * T + T T*] [ T + T* ] 
Ie T  T * T  + T * T*T + T * T T* + T  T T * = T* T  T + T *T 
T*+ T* T T * + T T* T * 
Ie T * T* T + T T T * = T* T T + T T* T* 
 
Theorem 1:- If T  is a quasi M normal operator and ʎ be any 
scalar which is real than ʎT is also a quasi M normal 
operator.  
 
 Proof:- Since T is a quasi M normal operator, therefore 
 
 [T + T*, T* T + T T* ] = 0  (1) 
 
 Now if ʎ be a real number, then 
 
 (ʎ T)* = ʎ T* = ʎ T*  (2) 
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 { ʎ T + )ʎ T )*] [ )ʎ T )* )ʎ T ) + )ʎ T ) )ʎ T )*} = ʎ3 {T + 
T*} { T* T + T T*}  (3) 
 [{ )ʎ T )* )ʎ T ) + )ʎ T )} )ʎ T )*} {ʎ T + (ʎ T)*}] = ʎ

3
                

{ T* T + T T*}{T + T*}  (4) 
 
 By equation (1), (3) & (4) we see that T is a quasi M normal 
Operato r. 
 
 Theorem 2:- Since T is a self adjoint operator on  a Hilbert  
space H then T is a quasi M normal operator on H. 
 Proof:- Since T  is a self adjoint operator, then T =T*  (1) 
 
 {T + T*} {T* T + T T*} = { T + T } { T T + T T } = 4T3    (2) 
 
 { T* T + T T*} { T + T*} = { T T + T T } { T + T } = 4T

3
  (3) 

 
By equation (1), (2) & (3) T is a quasi M normal operator. 
 
Theorem 3:- Since T is a quasi M  normal operator, then so  
is T* 
 
Given that T is a quasi M normal operator. 
 
 So, )T + T* ) )T*T + T T* ) = )T* T + T T* ))T + T*)   (1) 
 
 Substituting T* for T in (1), 
 
 L H S = { T* + )T*)*} { )T*)* T* + T* )T*)*} = { T* + T } 
{ T T* + T* T }  (2)  
 
 Since )T* )* = T 
 
 R H S = { )T* )* T + T* )T* )*} { T* + )T* )*} = { T T* + 
T*T } { T* + T }  (3) 
 
 By equation (2) & (3), T* is quasi M normal. 
 
 Theorem 4:- Let T be any operator on Hilbert space H. 
 Now consider the following  
 
 N1 = T + T*; N2 = T T*; N3 = T*T; N4 = T + T* + T* T + T T* 
 
 Then N1, N2, N3& N4 are quasi M normal operator on H. 
 
 Proof:- Here N1 = T + T* 
 
 N1* = { T = T* }* = T* + )T*)* = T* + T = N1  
 N2* = { T T* }* = )T* )* T* = T T* = N2  
 N3* = { T* T }* = T*)T*)* = T* T = N3 
 N4* = { T + T* + T* T + T T*}* = T*+ )T*)* + T* (T* )*+ 
)T* )*T*= T* + T + T* T + T T* = N4 
  
So,  N1, N2, N3 & N4are self adjoint operator. But every s elf 
adjoint operator is a quasi M normal  operator, so N1, N2, N3 
& N4 are quasi M normal operator. 
 
Cor(i) :- The zero operator 0 and identity operator I are quasi  
M normal operator. 
 
 Since 0* = 0; I* = I 
 
 0 & I are self adjoint operator so they are quasi M normal 
operator.  
 

Cor (ii):- Let be any operator on Hilbert space H, then I + T * 
T and I + T T* are quasi M normal operator 
 As { I + T* T}* = I* + T* )T* )* = I + T* T  
 { I + T T* } = I* + )T* )* T* = I +T T* 
 
Theorem 5:- If T be an unitary operator on a Hilbert space 
H, then T is a quasi M normal operator. 
 
Proof:- Since T is an unitary operator on Hilbert space H,  
therefore T * T = T T* = I 
 
 Now )T + T* ) )T* T + T T* ) = )T + T* ) )I + I ) = 2 )T + 
T* ) I = 2 )T I + T* I ) = 2 )T + T* )---- (1) 
 
 Similarly, )T* T + T T* ) )T + T* ) = )I + I ) )T + T* ) = 2 )I 
T + I T* ) = 2 )T + T* ) -------- (2) 
 
 By equation (1) &(2) T is quasi M normal operator. 
 
 Theorem 6:- Let T be a self adjoint operator on a Hilbert  
space H and S be any operator on H, then  
 
 S* T S is a quasi M normal operator. 
 
 Proof:- Since T  is self adjoint operator therefore T* =T 
 
 Now, )S* T S ) = S* T* )S* ) = S* T S 
 
As, S* T S is self adjoint operator and every self adjoint  
operator is quasi M normal operator 
 
So,  S* T S is a quasi M normal operator. 
 
Theorem 7:- The set L of all quasi M normal operators on a 
Hilbert space H form a closed subset o f B)H )  and contains  
the set of all self adjoint operators and unitary operators on 
H. B )H ) is a class of all operator on H. 
 
Proof:- Let L b e the set of all quasi M normal operator on a 
Hilbert space H. We shall show that L is  a closed subset o f 
B )H ). Let T be the limit point of L. Then there exists a 
sequence of qu asi  normal operator{ Tn }, such that Tn → T 
as n →∞. We have to show that T belongs to L ie T  is  a 
quasi M normal operator. 
 
 Now, || )T + T* ) )T*T + + T T* ) – )T* T + T T* ) )T + T* ) ||  
 = ||  )T + T* ) )T*T + + T T* ) – )Tn + Tn* ) )Tn*Tn + Tn Tn* ) + 
)Tn + Tn* ) )Tn*Tn + Tn Tn* ) 
 - )Tn*Tn + Tn Tn* ) )Tn + Tn* ) + )Tn*Tn + Tn Tn* ) )Tn + Tn* ) 
 –)Tn*Tn + Tn Tn* ) )Tn + Tn* ) || 
 ≤ || )T + T* ) )T*T + + T T* ) - )Tn + Tn* ) )Tn*Tn + Tn Tn* ) || +  
 ||  )Tn + Tn* ) )Tn*Tn + Tn Tn* ) –)Tn*Tn + Tn Tn* ) )Tn + Tn* ) || 
+ 
 ||  )Tn*Tn + Tn Tn* ) )Tn + Tn* ) - )T*T + + T T* ) )T + T* ) || 
 → 0 as n →∞ 
 
Which shows that ||  )T + T* ) )T*T + + T T* ) – )T* T  + T 
T* ) )T + T* ) || = 0 
 

 T is a quasi M normal operator. 
 T belong to L 

 
Thus every limit point of L belong to L. So L is a closed 
subset of B (H). 

13360                    Bakshi Om Prakash Sinha et al. Quasi m normal operators linear operators on hilbert space for which t + t* and t*t +  
t t* commute, where t* stands for adjiont of t  



 Since every self adjoind operator and unitary operator are 
quasi M normal operator. So,  L contain the set of all self 
adjoint and unitary operators. 
  
 Theorem 8:- If T 1 and T2 be two quasi M normal operators  
such that each is the adjoint of other, then 
 
 T1 + T2 and T1T2 are quasi M normal operator. 
 
 Here ,  T 1* = T 2 and T2* = T1, since T1 and T2 are quasi M  
normal operator, therefore  
 
 (T1 + T1*) )T1* T1 + T1 T1* ) = )T1* T1 + T1 T1* ) )T1 + T1*)  
 )T2 + T2*) )T2* T2 + T2 T2* ) = )T2* T2 + T2 T2* ) )T2 + T2*)  
 Now, )T1 + T2 ) )T1 + T2 )* )T1 + T2 ) + )T1 + T2 ) )T1 + T2 ) 
)T1 + T2 )* 
 = )T1* + T2* ) )T1* + T2* )* )T1 + T2 ) + )T1 + T2 ) )T1 + T2 ) 
)T1 + T2 )* 
 = )T2 + T1 ) )T2 + T1 ) )T1 + T2 ) + )T1 + T2 ) )T1 + T2 ) )T2 + 
T1 ) ------- ------------- (1) 
 
Similarly, )T1 + T2 )* )T1 + T2 ) )T1 + T2 ) + )T1 + T2 ) )T1 + 
T2 )* )T1 + T2 ) = 2 )T1 + T2 )3 -------- -------- (2) 
 
 By equation (1) &(2) T1 + T2 is quasi M normal operator. 
 
 Again, )T1T2 )* )T1T2 )* )T1T2 ) + )T1T2 ) )T1T2 ) )T1T2 )* 
 = )T2T1 )* )T2*T1*) )T1T2 ) + )T1T2 ) )T1T2 ) )T2*T1*) 
 = )T1T2 ) )T1T2 ) )T1T2 ) + )T1T2 ) )T1T2 ) )T1T2 ) = 2 )T1 T2 
)
3
 -------- ----------- (3) 

 Similarly, )T1T2 )* )T1T2 ) )T1T2 ) + )T1T2 ) )T1T2 )* )T1T2 
)* = 2 )T1 T2 )3 -------- -------- ----- (4) 
 
By equations (3) & (4) we see that T 1 T2 is a quasi M normal 
operator.  
 
 Theorem 9:- If T = UP be a polar decomposition of an 
operator, where the null space of P and U is a unitary 
operator. Then 
 
 [ T + T*, T* T + T T*] =0 [ U P + P U*, P2 + U P2U ] =0 
 Here T  = U P  
 T* = )U P )* = P* U* = P U* 
 Hence N )U ) = N )P ) 
 Now, [ T + T*, T* T + T T*] = 0 
 [ U P + P U*, P U* U P + U P P U* ] = 0  
 [ U P + P U*, P P + U P* U* ] = 0 
 [ U P + P U*, P2 + U P*U* ] = 0 
 [ U U* = U U* = T ]T 
 
Theorem 10:- Let S be self adjoint operator on a Hilbert 
space H and T be quasi M normal operator on H Such that S  
T = T S, then S T is a quasi M normal operator. 
 
 Proof:- Since S is a self adjoint operator, therefore S* = S 
 Now, S T = T S 
 
•)S T )* = )T S )* 
•T* S* = S* T* 
•T* S = S T* (1) 
 
 
 
 
 

Since, T is a quasi M normal operator, so 
 
 )T + T* ) )T* T + T T* ) = )T* T + T T* ) )T + T* ) 
 ie T T* T + T T T* + T* T* T + T* T T* = T* T T + T T* T 
+ T* T T* + T T* T* 
 ie T T T * + T* T* T = T* T T + T T* T* ----------- ------ (2) 
 Now, )S T ) )S T ) )S T )* + )S T )* )S T )* )S T ) 
 = )S T ) )S T ) )T* S*) + )T* S* ) )T* S* ) )S T )  
 = )S T ) )S T ) )T* S) + )T* S ) )T* S ) )S T ) 
 = )S T ) )S T ) )S T* ) + )S T*) )S T* ) )S T ) 
 = S

3
 )T T T * + T* T* T )   (3) 

 Similarly, )S T )* )S T ) )S T ) + )S T ) )S T )* )S T )* 
 = S3 )T* T T + T T* T *)   (4) 
 
 By equation (2), (3) & (4), we find that S T is a quasi M 
normal operator.  
 
 Theorem 11:- Let T = R + i S be any operator on a Hilbert  
space H, where R S = S R  
 
Then T is quasi M normal operator if R S S = S S R 
Proof:- Here T = R + i S 
 Therefore T* = R – i S 
 T T* = )R + i S ) )R – i S ) = R R + S S + i )S R – R S )  
 ie T T* = R R + S S  
 Similarly, T* T = )R – i S ) )R + i S ) 
 Now, )T + T* ) )T* T + T T* ) = { )R + i S ) + )R – i S ) }          
{2 R R + 2 S S } 
 = 2 R )2 R R + 2 S S ) = 4 )R R R + R S S )   (1) 
 
 Similarly, )T* T + T T* ) )T + T* )= 4 )R R R + S S R )  (2)  
 We find that )T + T* ) )T* T + T T * ) = )T* T + T T* ) )T + 
T* ) 
 Hence, if S S R = R S S 
 Therefore T is quasi M normal if S S R = R S S 
----------- * ----------- * ----------- 
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