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INTRODUCTION 
 

Drosophila melanogaster adapt their food consumption to their 
internal needs and avoid ingesting noxious molecules. Defects 
in the genes involved in these decisions induce behavioral 
alterations that are usually screened by monitoring flies 
feeding in two-choice or in no-choice situations (
2017). Although psychostimulants, opiates and ethanol all 
have different primary effects and modes of action in the 
central nervous system (CNS), current theories suggest that 
their positive reinforcing, or rewarding, properties are 
mediated in part by an elevation of extracellular dopamine in 
the nucleus accumbens (Di Chiara,1995). Nicotine, the major 
addictive component of tobacco, affects mammalian behavior 
by activating nicotinic acetylcholine receptors (Nestler
When exposed to volatilized nicotine, flies exhibit locomotor 
hyperactivity and spasmodic movements leading to grooming 
at low doses and hypokinesis and akinesia at higher doses 
(Bainton et al. 2000). Similar to cocaine, nicotine exposure 
dose-dependently impairs negative geotaxis in flies (
Gubareff and Sleator, 2011.). In mammals, the addictive 
properties of nicotine are thought to be mediated by both direct 
and indirect activation of dopaminergic neurons 
(Nestler 2005). The locomotor effects of ni
similarly dependent on dopamine, as pharmacological 
depletion of dopamine reduces nicotine sensitivity (
al., 2008).  
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ABSTRACT 

Fruit flies react to taste molecules in a way which is quite similar to humans and within the detection 
range of mammals. They are attracted to sugars, avoid bitter and toxic molecules, and adapt their 
consumption of acids and salts to their internal needs. In Drosophila
mediated through hair-like structures, called sensilla, located on the mouthparts, the legs, the wings 
margin, and the ovipositor. The behavior paradigms are relatively complicated, it is necessary to 
understand how the fundamental behavior is organized at neural level, before a full understanding of 
the complex behavior. In the present study Drosophila melanogaster
when facing sensory stimulations towards varied concentrations of tobacco.

is an open access article distributed under the Creative Commons
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have different primary effects and modes of action in the 
central nervous system (CNS), current theories suggest that 
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hyperactivity and spasmodic movements leading to grooming 
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Aside from dopamine, little is known about the molecular 
mechanisms mediating nicotine sensitivity in flies. However, 
several genes known to mediate cocaine sensitivity in flies 
have also been shown to regulate nicotine sensitivity:
moody mutant flies are sensitive to the effects of both drugs, 
whereas RhoGAP18B and tao mutants are resistant (
and Stocker 2007; Gong 2012
genes suggest that certain shared
multiple types of drug addiction in flies.
relationship between mechanisms mediating acute and long
term responses to drugs is key to understanding the addictive 
properties of the drug.  
 

MATERIALS AND METHODOLOGY
 

Fly Stock 
 
The fly stocks were routinely cultured in standard wheat cream 
agar medium in uncrowded condition at 22± 1ºC (rearing 
temperature), 12:12 h light and dark periods and relative 
humidity of 70%. The test flies were cultured in wheat cream 
agar medium along with different concentrations of the 
tobacco (20 mg/1000ml, 40 mg/1000ml and 60 mg/1000ml). 
 
Larval Gustatory Preference 
 
On the day of experiment the Petri dishes were prepared 
(1mm×100mm) for control a Petri dish was divided into 2 
halves, both of which were filled with 1% agarose in distil 
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Aside from dopamine, little is known about the molecular 
mechanisms mediating nicotine sensitivity in flies. However, 
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water and allowed to cool for 10 minutes. For the experiment a 
Petri dish was divided into 2 halves, 1 half was filled with 1% 
agarose in distil water and allowed to cool for 10 minutes.  The 
other half was filled with 1% agarose along with experimental 
concentration (i.e., 40 mg, 60 mg, 80 mg caffeine and nicotine) 
and allowed to cool. Ten larvae were introduced in the center 
of each petri dish and allowed to choose.  The number of 
larvae on each half of the petri dish was counted and the 
gustatory preference index (GPI) was calculated, every 2 
minutes for 20 minutes.  GPI values range from -1 to +1 with 
negative values representing preference for pure and positive 
values, representing preference for nicotine or caffeine. 
 
             number of experimental – control 
GPI = 
                Total number larvae – upside     
 
Larval Olfactory Choice preference 
 
10 larvae were placed in the cap of the vial that is the start 
point and the movement of the larvae was observed. This was 
done simultaneously for all the experimental concentrations 
(i.e., 40mg, 60mg, and 80mg nicotine and caffeine) and 
control. The number of larvae and the distance travelled by it 
was tabulated for 50minutes at 5minute intervals. The odour 
choice index (OCI – equation 2) was calculated for the 
readings taken. 
 
                    number of flies in experiment-control 
OCI= 
                                  Total number of flies          
 

RESULTS 
 
Graph1, shows the larvae fed with different concentrations of 
tobacco. The larvae fed with lower concentration of tobacco 
tend to prefer the same media when compared to other 
concentrations. The larvae exposed to mid and high 
concentrations preferred to move from treated media to 
control. The larvae treated with high concentrations have 
shown increased larval olfactory choice preference, after 30 
min the same larvae gradually decreased the larval olfactory 
choice preference. Larvae fed with lower concentration has 
shown increased larval olfactory choice preference Graph 2. 
 

  
 

Graph 1. Mean (±SE) larval gustatory preference of Drosophila 
melanogaster an exposure to different concentrations of tobacco 

 
 

Graph 1. Mean (±SE) larval olfactory preference of Drosophila 
melanogaster an exposure to different concentrations of tobacco 

 

DISCUSSION  
 
The next decade should witness the discovery of many novel 
mechanisms underlying addiction-related behaviors in flies as 
the number of tools available to study molecular and neural 
processes is expanding at a rapid rate (Jones et.al., 2007). 
Based on what we have learned in from Drosophila addiction 
research, we expect that these novel mechanisms will be 
relevant to mammalian models and provide novel targets for 
the development of pharmacotherapies for drug addiction 
(Kuhar et al., 2014). Upon exposure to volatilized free-base 
nicotine and caffiene, adult Drosophila exhibited dose-
dependent behavioral responses. Low doses induced primarily 
grooming and hyperactivity. Moderate doses led to 
hypokinesis and stereotypic locomotion often manifested as 
circling (Millar and Denholm 2007). High doses induced 
spasmodic activity, tremor, and finally, complete loss of 
movement (akinesia). These behaviors are qualitatively very 
similar to those described by McClung and Hirsh (1998).  The 
study emphasizes innate preference behaviors cannot be 
conclude that the presence of common mechanisms underlying 
different types of preferences, since the accumulated data is 
limited to the level of primary sensation (Pendleton et.al., 
2000; Gargano et al., 2005 ). Actually, there are signs that 
similarities between larval navigational strategy in chemotaxis 
and odor taxis can be found are diverse (Sokolowski 2001). It 
will be fascinating to look for the common basis across 
different preference behaviors of various modalities, but 
probably only after the full molecular and neural underlying 
mechanism is disclosed (Stocker 2004). It is evident that the 
molecular and neural basis for these preference behaviors is 
quite diverse. No common molecules or neurons are found to 
be involved in different types of preference behaviors (Todd 
and Staveley, 2004). Our results highlight the important role 
that nutrition plays in determining the phenotypic expression 
of starvation in Drosophila and provide broad implications for 
understanding tobacco responses to larval gustatory and larval 
olfactory choice preference with respect to tobacco. This study 
introduces insights into the evolution of tobacco responses to 
variable drug abuse. 
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