

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 10, Issue, 09, pp.73379-73381, September, 2018 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

DOI: https://doi.org/10.24941/ijcr.32379.09.2018

RESEARCH ARTICLE

PROFILIN ENHANCES THE ACTIVATED PKC ϵ ACTVITY AND STIMULATES TRANSLOCATION OF α 7 ACH RECEPTOR TOWARDS THE CELL SURFACE

^{1,2,*}Tomoyuki Nishizaki

¹Professor, Shanghai University of Traditional Chinese Medicine, Education College of Medicine, Osaka, Japan ²Research Director, Innovative Bioinformation Research Organization, Kobe, Japan

ABSTRACT

Article History: Received 10th June, 2018 Received in revised form 27th July, 2018 Accepted 05th August, 2018 Published online 30th September, 2018

Key Words:

ARTICLE INFO

Profilin, PKCε, α7 ACh Receptor, Translocation.

Profilin is an actin-binding protein and engages in the dynamic turnover and restructuring of the actin cytoskeleton. The present study investigated the role of profilin in α 7 ACh receptor trafficking. The selective PKC ϵ activator DCP-LA increased cell surface localization of α 7 ACh receptor in differentiated PC-12 cells, which was inhibited by knocking down PKC ϵ . The effect of DCP-LA was also cancelled by knocking down profilin. In the cell-free kinase assay, profilin significantly enhanced the activity of PKC ϵ activated by DCP-LA, although no PKC ϵ activation was induced by profilin alone. It is indicated from these results that profilin stimulates translocation of α 7 ACh receptor towards the cell surface by enhancing the activated PKC ϵ activity.

Copyright © 2018, *Tomoyuki Nishizaki.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Tomoyuki Nishizaki, 2018. "Profilin enhances the activated PKCε activity and stimulates translocation of α7 ach receptor towards the cell surface", *International Journal of Current Research*, 10, (09), 73379-73381.

INTRODUCTION

The linoleic acid derivative 8-[2-(2-pentylcyclopropylmethyl)-cyclopropyl]-octanoicacid (DCP-LA) activates PKCE selectivelyand directly by binding to the phosphatidylserine (PS)binding/associating sites in a diacylglycerol (DG)- and calcium-independent manner (Kanno et al., 2006; Kanno et al., 2015). DCP-LA stimulates vesicular translocation and exocytosis of a7 ACh receptor at the presynaptic terminals in a PKCE-dependent manner (Kanno et al., 2012). DCP-LAincreases cell surface localization of a7 ACh receptor in a 4.1N-dependent manner under the control of PKC_E, but without phosphorylating 4.1N (Kanno et al., 2013). Moreover, DCP-LA enhances PKCe-mediated phosphorylation of the motor protein myosin Va, which triggers an assembly of N-ethylmaleimide-sensitive factor (NSF)/myosin Va/a7 ACh receptorrelevant to vesicular exocytosis (Nishizaki, 2018). PKC_ɛ, thus, is a critical factor for_{a7} ACh receptor trafficking. Profilin, an actin-binding protein, has a higher affinity for ATPactin monomers and promotes actin polymerization (Selden et al., 1999).

*Corresponding author: 1,2,*Tomoyuki Nishizaki

¹Professor, Shanghai University of Traditional Chinese Medicine, Education College of Medicine, Osaka, Japan Myosin V, that moves on the actin filament towards the plusend, carries cargos containing neurotransmitters, hormones, and neurotransmitter receptors (Hammer and Wagner, 2013). Then, I wondered whether profilin might play a role in the regulation of α 7 ACh receptor trafficking. The present study was conducted to answer this question. The results show that profilin increases cell surface localization of α 7 ACh receptor by enhancing the activated PKC ϵ activity.

MATERIALS AND METHODS

Cell culture: PC-12 cells, obtained from RIKEN Cell Bank (Tsukuba, Japan), were cultured in DMEM with 10% (v/v) heat-inactivated FBS and 10% (v/v) heat-inactivated horse serum supplemented with penicillin (100 U/ml), and streptomycin (0.1 mg/mL), in a humidified atmosphere of 5% CO_2 and 95% air at 37 °C. PC-12 cells were differentiated by treatment with nerve growth factor (100 ng/mL) for 5 days.

Monitoring of a7 ACh receptor trafficking: PC-12 cells were homogenized by sonication in an ice-cold mitochondrial buffer (210 mM mannitol, 70 mM sucrose, and 1 mM EDTA, 10 mM HEPES, pH 7.5) containing 1% (v/v) protease inhibitor cocktail and centrifuged at 3,000 rpm for 5 min at 4 °C. The supernatants were centrifuged at 11,000 rpm for 15 min at 4 °C and the collected supernatants were further ultra centrifuged at 100,000 g for 60 min at 4 °C.

²Research Director, Innovative Bioinformation Research Organization, Kobe, Japan.

The supernatants and pellets were used as the cytosolic and membrane fractions, respectively. Protein plasma concentrations for each fraction were determined using a BCA protein assay kit (Thermo Fisher Scientific, Rockford, IL, Whether the cytosolic and plasma membrane USA). components were successfully separated was confirmed in the Western blot analysis using antibodies against the cytosolic marker LDH (Abcam, Cambridge, MA, USA) and the plasma membrane marker cadherin (Santa Cruz Biotechnology, Santa Cruz, CA, USA). After boiling for 5 min, proteins in the cytosolic and plasma membrane components were separated by SDS-polyacrylamide gel electrophoresis (PAGE) using a TGX gel (BioRad, Hercules, CA, USA) and then transferred to polyvinylidene difluoride membranes. Blotting membranes were blocked with TBS-T containing 5% (w/v) bovine serum albumin and subsequently incubated with an anti- α 7 ACh receptor antibody (Sigma, St. Louis, MO, USA). After washing, membranes were reacted with a horseradish peroxidase-conjugated goat anti-mouse IgG antibody. Immunoreactivity was detected with an ECL kit (GE Healthcare) and visualized using a chemiluminescence detection system (GE Healthcare).

Protein knockdown: The siRNAs for PKC ε (Santa Cruz Biotechnology), profiling (Thermo Fisher Scientific), and negative control (NC) (Ambion, Carlsbad, CA, USA) were transfected into PC-12 cells using a Lipofectamine reagent (Invitrogen, Carlsbad, CA, USA), and cells were used for experiments 48 h after transfection. It was confirmed whether each protein is successfully knocked downin theWestern blot analysisusing antibodies against PKC ε (BD Biosciences), profilin (Abcam), and β -actin.

Cell-free PKCE assay: The PKCE activity was assayed in the cell-free system by the method as previously described (Kanno et al., 2006). Synthetic PKC substrate peptide (Pyr-Lys-Arg-Pro-Ser-Gln-Arg-Ser-Lys-Tyr-Leu) (Peptide Institute Inc.) (10 μM) was reacted with recombinant human PKCε (Abcam) in a Ca²⁺-free and phosphatidylserine-free solution containing 10µM DCP-LA, 20 mM Tris-HCl (pH 7.5), 5 mM Mg-acetate, and 100µM ATP in the presence and absence of recombinant human profilin 1 (10 µM) (Abcam) at 30 °C for 5 min. After loading on a reversed phase HPLC (LC-10ATvp, Shimadzu Co.), a substrate peptide peak and a new product peak, corresponding to non-phosphorylated and phosphorylated peptides, respectively, were detected at an absorbance of 214 nm (SPD-10Avp UV-VIS detector, Shimadzu Co.). The quantity of phosphorylated substrate peptide (pmol/min) was calculated and used as an index of PKCE activity.

Statistical analysis: Statistical analysis was carried out using analysis of variance (ANOVA) followed by a Bonferroni correction.

RESULTS

Profilin increases cell surface localization of a7 ACh receptor: DCP-LA significantly increased cell surface localization of α 7 ACh receptor in differentiated PC-12 cells, and the effect was significantly inhibited by knocking down PKC ϵ (Figure 1A). This provides evidence that PKC ϵ stimulates translocation of α 7 ACh receptor towards the cell surface.

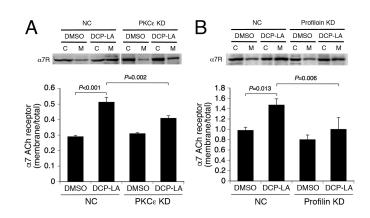


Figure 1.Profilin contributes to DCP-LA-induced increase in the cell surface localization of α 7 ACh receptor. (A) PC-12 cells, transfected with the negative controlsi RNA (NC) or the PKC ϵ siRNA (PKC ϵ KD), were treated with DMSO or DCP-LA (100 nM) for 10 min and lysed. (B) Cells, transfected with the negative control siRNA (NC) or the profilin siRNA (Profilin KD), were treated with DMSO or DCP-LA (100 nM) for 10 min and lysed. Then, thoselysates were separated into the cytosolic (C) and plasma membrane components (M), followed by Western blotting using an anti- α 7 ACh receptor (α 7R) antibody in each component. In the graphs, each column represents the mean (\pm SEM) signal intensity for α 7 ACh receptor in the plasma membrane components relative to the signal intensity in whole cells (n=4 and 6 independent experiments in A and B, respectively). *P* values, ANOVA followed by a Bonferroni correction.

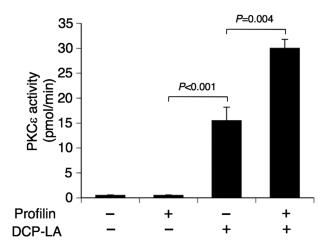


Figure 2. Profilin enhances the activity of PKC ε activated by DCP LA. In the cell-free system, synthetic PKC substrate peptide (10 μ M) was reacted with PKC ε in the absence and presence of DCP-LA (10 μ M) and/or profilin 1 (10 μ M) at 30 °C for 5 min, and the quantity of phosphorylated substrate peptide was calculated. In the graph, each column represents the mean (± SEM) PKC ε activity (pmol/min) (n=4 independent experiments). *P* values, ANOVA followed by a Bonferroni correction.

Intriguingly, DCP-LA-induced increase in the cell surface localization of α 7 ACh receptor was clearly prevented by knocking down profilin (Figure 1B). This indicates that profilin contributes to PKC ϵ -regulated translocation of α 7 ACh receptor towards the cell surface. This also suggests that profilin might be implicated in PKC ϵ activation.

Profilin enhances the activated PKCe activity: To see whether profilin is implicated in PKCe activation, cell-free PKCe assay was carried out.Consistent with the previous studies, DCP-LA activated PKCein a DG- and calcium-independent manner (Figure 2). Profilin significantly enhanced the activity of PKCe activated by DCP-LA, although no PKCe activation was induced by profilin alone (Figure 2). This implies that profilin modulates the activated PKCe activity.

DISCUSSION

PKC isozymes are classified into conventional PKCs such as PKC α , - β I, - β II, and - γ , novel PKCs such as PKC δ , - ϵ , - η , - θ , and $-\mu$, and atypical PKCs such as PKC λ 1 for mouse/human, - ζ , and -v (Steinberg, 2008). The novel PKC isozymes including PKCE are activated by binding DG, PS, or cisunsaturated free fatty acids. DCP-LA activates PKCE by binding tothe PS binding/associating sites Arg50 and Ile89 in the C2-like domain of PKCE at the carboxyl-terminal end and the cyclopropane rings, respectively, which are distinct from the phorbol 12-myristate 13-acetate (PMA) binding site in the C1 domain (Kanno et al., 2006; Kanno et al., 2015). In the cellfree system, profilin induced no PKCE activation. This implies that profilin by itself has no potential to activate PKCE directly. Profilin, however, significantly enhanced the activity of PKCE activated by DCP-LA. Collectively, these results indicate that profilin serves as a modulator of the activated PKCE activity. In the present study, DCP-LA increased cell surface localization of α 7 ACh receptor in PC-12 cells, and the effect was restrained by knocking-down PKCE. This provides further evidence that PKCE is indispensable for vesicular transport and exocytosis of a7 ACh receptor. Surprisingly, DCP-LA-induced increase in the cell surface localization of $\alpha 7$ ACh receptor was also prevented by knocking-down profilin. Overall, the results of the present study allow drawing a conclusion that profiling enhances the activatedPKCE activity, thereby promotingvesicular transport and exocytosis of a7 ACh receptor. This may provide the novel notion regarding PKC ε activation and α 7 ACh receptor trafficking under the control of profilin.

Conclusion

The results of the present study demonstrate that profilin enhances the activated PKC ϵ activity and stimulates translocation of α 7 ACh receptor towards the cell surface.

REFERENCES

- Hammer, J.A. 3rd., Wagner, W. 2013. Functions of class V myosins in neurons. *J. Biol. Chem.*, 288:28428-28434.
- Kanno, T., Tanaka, A., Nishizaki, T. 2012. Linoleic acid derivative DCP-LA stimulates vesicular transport ofα7 ACh receptors towards surface membrane. *Cell. Physiol. Biochem.*, 30:75-82.
- Kanno, T., Tsuchiya, A., Shimizu, T., *et al.* 2015. DCP-LA activates cytosolic PKCɛ by interacting with the phosphatidylserine binding/associating sites Arg50 and Ile89 in the C2-like domain. *Cell. Physiol. Biochem.*, 37:193-200.
- Kanno, T., Tsuchiya, A., Tanaka, A., *et al.* 2013. The linoleic acid derivative DCP-LA increases membrane surface localization of the α7 ACh receptor in a protein 4.1Ndependent manner. *Biochem. J.*, 450:303-309.
- Kanno, T., Yamamoto, H., Yaguchi, T. *et al.* 2006. The linoleic acid derivative DCP-LA selectively activates PKCε, possibly binding to the phosphatidylserine binding site. *J. Lipid Res.*, 47:1146-1156.
- Nishizaki, T. 2018. PKCε activator DCP-LA facilitates assembly of NSF/myosin Va/α7 ACh receptor. *Int. J. Curr. Res.*, 10:69406-69409.
- Selden, L.A., Kinosian, H.J., Estes, J.E., *et al.* 1999. Impact of profilin on actin-bound nucleotide exchange and actin polymerization dynamics. *Biochemistry*, 38:2769-2778.
- Steinberg, S.F. 2008. Structural basis of protein kinase C isoform function. *Physiol. Rev.*, 88:1341-1378.
