

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 10, Issue, 08, pp.73065-73067, August, 2018 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

GENETIC EVALUATION OF TABEBUIA AVELLANEDAE AGAINST STAPHYLOCOCCUS AUREUS

*Hind A. A. Al-Zahrani

Biology Depart, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia

ARTICLE INFO	ABSTRACT
Article History: Received 12 th May, 2018 Received in revised form 18 th June, 2018 Accepted 20 th July, 2018 Published online 31 st August, 2018	Tabebuiaavellanedae " <i>tabebuiaavellanedae</i> " containing two antimicrobial active elements. This study aimed to cover one of the antimicrobial effect of Tabebuiaavellanedae against one of food pathogenic microorganism <i>Staphylococcus aureus</i> . About 50 gm dried Tabebuiaavellanedae coarse powder extracts were collected and stock solution of concentration of 10 mg/ml in (acetone and methanol). It was tested against one gram positive bacteria (<i>Staphylococcusaureus</i>) (ATCC 25923) then measuring the zone of inhibition. <i>S. aureus</i> enterotoxins genes multiplex PCR detected also.
<i>Key Words:</i> Virulence Genes, PCR, Pau d'arco, Antimicrobial Activity, Pathogenic Microorganisms.	Results viewed the different inhibition zones on sensitivity test against <i>Staphylococcus aureus</i> using different concentrations of Tabebuiaavellanedae EO as following: the complete absence of inhibition effect in control samples while the inhibition effect were gradual grow up with higher Tabebuiaavellanedae concentrations as following; 1cm, 2cm, 6cm diameter around the disc immersed by 2.5%, 5% &10% concentrations respectively. Tabebuiaavellanedae had inhibition effect against; <i>Sea, Sec, Sed, See</i> virulence genes while not effect on <i>Seb</i> virulence genes.Further studies are recommend to increase researches study the genetic effect of Tabebuiaavellanedae <i>Staphylococcus aureus and other</i> bacterial virulence's genes.

Copyright © 2018, *Hind A. A. Al-Zahrani*. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Hind A. A. Al-Zahrani. 2018. "Genetic Evaluation of Tabebuia avellanedae Against Staphylococcus aureus", International Journal of Current Research, 10, (08), 73065-73067.

INTRODUCTION

Tabebuiaavellanedae"tabebuiaavellanedae"is a tree that grows in tropical rainforest and use their wood medically. Tabebuiaavellanedae containing two antimicrobial active elements known as "naphthoquinones"; lapachol and betalapachone which is a toxic to nearly all types of harmful organisms and have strong killing effect against bacteria, viruses, parasites and fungi with strong anti-inflammatory activity. Tabebuiaavellanedae are performed in capsule, extract and tea forms which enhances the immune system, radiation protection. It has many applications in feed and food additives and drug industries, science and cosmetic as a food in human, aquaculture, vet and poultry and food industries including beverages, bakery products, candy, gel desserts in different countries. (Byeon, et. al., 2008; Maddalyet. al., 2010; Hosseini, et. al. 2013; Mosyet. al., 2014; Ghaeni, & Roomiani, 2016 and Pyne, et. al., 2017). Consuming of cup of Tabebuiaavellanedae inner bark tea daily orally and externally are very helpful in treatment of prostate inflammation, treat arthritis, pain, fever, dysentery and ulcers.

*Corresponding author: Hind A. A. Al-Zahrani Biology Depart, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia DOI: https://doi.org/10.24941/ijcr.32166.08.2018 High doses of this compound can lead to dangerous side effects, like reproductive toxicity. Tabebuiaavellanedae. This study aimed to cover one of the antimicrobial effect of Tabebuiaavellanedae against one of food pathogenic microorganism *Staphylococcus aureus*.

MATERIAL AND METHODS

TabebuiaavellanedaeOil Extraction and Microbiological Quality (APHA, 1992 and AOAC, 2005): About 50 gm dried Tabebuiaavellanedae coarse powder was soaked in 300 ml of acetone and methanol then the flasks were covered with aluminum foil and stand for 7days. Then filtered by Whatman filter paper no. 1 and evaporated at 40°C using rotary evaporator. The extracts were collected and stock solution of concentration of 10 mg/ml in (acetone and methanol). It was against positive tested one gram bacteria (Staphylococcusaureus) (ATCC 25923) were cultured on Muller Hinton then impress Tabebuiaavellanedae discs with different concentrations and incubated at 37°C/24 hours. Then measuring the zone of inhibition (Jonathanand Fasidi, 2003; Hemashenpagam and Selvaraj, 2010 and Balakumar et al., 2011).

Identification of Isolated Organisms (Biochemical behaviors): Biochemical tests were applied as recommended

by APHA (2002). The pure cultures of suspected colonies were subjected to the following tests for confirmation and identification as follows: PCR Detection: genomic DNA was extracted from (Qiagen, Germany) isolates S. aureus, using the QIAamp DNA Mini kit (Qiagen, Germany, GmbH) with modifications from the manufacturer's recommendations. Briefly, 200 µl of the sample suspension was incubated with 10 μ l of proteinase K and 200 μ l of lysis buffer at 56°C for 10 min. After incubation, 200 µl of 100% ethanol was added to the lysate. The sample was then washed and centrifuged following the manufacturer's recommendations. Nucleic acid was eluted with 100 µl of elution buffer provided in the kit. Primers used were supplied from (Biobasic, Canada) as listed in table (1). Then PCR amplification performed for S. aureus enterotoxins genes multiplex PCR, primers were utilized in a 50 µl reaction containing 25 µl of 2X DreamTaq Green mastermix kit, 1 µl of each primer of 20 pmol concentration, 7 µl of water, and 8 µl of DNA template. The reactions were performed in applied biosystem 2720 thermal cycler.

Analysis of the PCR Products: The thermal cycler pattern was Primary denaturation the products of PCR were separated by electrophoresis on 1.5% agarose gel (Applichem, Germany, GmbH) in 1x TBE buffer at room temperature using gradients of 5V/cm. For gel analysis, 20 μ l and 30 μ l of the uniplex and multiplex PCR products respectively were loaded in each gel slot. Gelpilot 100 bp and 100 bp plus DNA Ladders (Qiagen, Germany, GmbH) were used to determine the fragment sizes. The gel was photographed by a gel documentation system (Alpha Innotech, Biometra) and the data was analyzed through computer software.

Statistical Analysis (SPSS, 2007): The statistical program, SPSS version 16 for window, was used for determination of means, standard error and analysis of variance (ANOVA) using the one way (mean at significance level of (P<0.05). Statistical significance was tested at the 5% level of significance in this study.

RESULTS AND DISCUSSION

Effect of Different Tabebuiaavellanedae EOs Concentration against Staphylococcus aureus; Fig. (1) which declared the different inhibition zones on sensitivity test against Staphylococcus aureus using different concentrations of Tabebuiaavellanedae EO as following: the complete absence of inhibition effect in control samples while the inhibition effect were gradual grow up with higher Tabebuia avellanedae concentrations as following;1cm, 2cm, 6cm diameter around the disc immersed by 2.5%, 5% &10% concentrations respectively. The prevalence of S. aureus enterotoxins: presented in fig. (2) That Tabebuiaavellanedae had inhibition effect against; Sea, Sec, Sed, See virulence genes while not effect on Seb virulence genes. There is no any research performed to test the effect of Tabebuiaavellanedae effect against Staphylococcus aureus virulence genes but the antimicrobial effect and inhibition effect against Staphylococcus aureus by many researchers such as; (Machado, et. al., 2003; Pereira, et. al., 2006; Kung, et. al., 2008 and Coelho, et. al., 2010) whom studied the Tabebuiaavellanedae effect against methicillin-resistant Staphylococcus aureus.

Table 1. Primers sequences, target genes, amplicon sizes and annealing temperatures of PCR reactions

Target agent	Target gene	Primers sequences	Amplified segment (bp)	Annealing	Reference
S. aureus	16rRNA	5-GTAGGTGGCAAGCGTTATCC-3	228	60	Monday and Bohach, (1999)
		5-CGC ACATCAGCGTCAG-3			•
	Sea	GGTTATCAATGTGCGGGTGG	102	50°C	Mehrotra <i>et al.</i> , (2000)
		CGGCACTTTTTTCTCTTCGG			
	Seb	GTATGGTGGTGTAACTGAGC	164		
		CCAAATAGTGACGAGTTAGG			
	Sec	AGATGAAGTAGTTGATGTGTATGG	451		
		CACACTTTTAGAATCAACCG			
	Sed	CCAATAATAGGAGAAAATAAAAG	278		
		ATTGGTATTTTTTTTCGTTC			
	See	AGGTTTTTTCACAGGTCATCC	209		
		CTTTTTTTTTCTTCGGTCAATC			

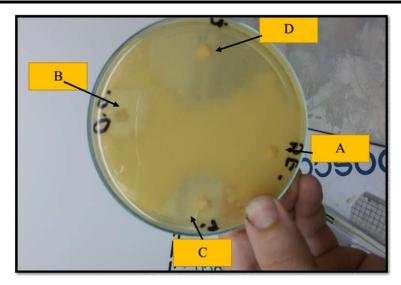


Figure 1. Effect of Different Tabebuiaavellanedae Concentration against Staphylococcusaureus

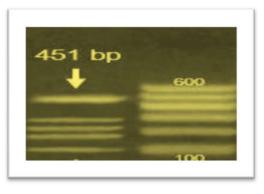


Figure 2. Agarose gel electrophoresis of specific dose-dependent amplification of *Staph. aureus*pathogenic gene (*Seb*)

Park et. al., (2006) and Park et. al., (2005) showed that Tabebuiaavellanedae had strong antibacterial activity against gram-negativeandgram-positive bacteria. In conclusion, this survey revealed that Tabebuiaavellanedae has strong inhibition effect which increased with higher concentrations. In addition to its strong inhibition effect against many virulence genes of *Staphylococcus aureus "Sea, Sec, Sed, See"* while not effect on *Seb* virulence genes. All these findings suggest that the consumption of Tabebuiaavellanedae have strong antibacterial effect and the study recommend to increase researches study the genetic effect of Tabebuiaavellanedae*Staphylococcus aureus and other* bacterial virulence's genes.

Staphylococcusaureus

- No inhibition zone around the control disc.
- About 1 cm inhibition zone around the disc containing 2.5% Tabebuiaavellanedae EO.
- About 2 cm inhibition zone around the disc containing 5% Tabebuiaavellanedae EO.
- About 6 cm inhibition zone around the disc containing 10% Tabebuiaavellanedae EO.

REFERENCES

- American public health association (APHA), 2002. compendium of methods for the microbiological examination of food 4th Ed. APHA technical committee on microbiological method for foods, Washington D.C.USA.
- American public health association (APHA). 1992. compendium of methods for the microbiological examination of food 4th Ed. APHA technical committee on microbiological method for foods, Washington D.C.USA,.
- AOAC 2005. Official Methods of Analysis, 18th Ed. Association Official Analytical Chemists, Arlington, Virginia, USA.
- Balakumar, R., Sivaprakasam, E., Kavitha, D., Sridhar, S. and Kumar, J.S. 2011. Antibacterial and antifungal activity of fruit bodies of *Phellinus*mushroom extract. *International journal of Biosciences*. 1(3): 72-77.
- Byeon, S. E., Chung, J. Y., Lee, Y. G., Kim, B. H., Kim, K. H., and Cho, J. Y. 2008. In vitro and in vivo antiinflammatory effects of taheebo, a water extract from the inner bark of Tabebuiaavellanedae. J Ethnopharmacol. 9-2-;119(1):145-152.
- Coelho JM, Antoniolli AB, Nunes e Silva D, Carvalho TM, Pontes ER, Odashiro AN 2010. [Effects of silver sulfadiazine, ipêroxo (tabebuiaavellanedae) extract and

barbatimão (stryphnodendronadstringens) extract on cutaneous wound healing in rats]. Rev Col Bras Cir. 37(1):45-51. Portuguese.

- Ghaeni, M. and Roomiani, L. 2016. Review for Application and Medicine Effects of Tabebuiaavellanedae. *Journal of Advanced Agricultural Technologies*. 3 (2): 114-117.
- Hemashenpagam, N. andSelvaraj T. 2010. Antibacterial potential of different extracts of Solanumxanthocarpum Chard and Wendt. Plant Arch., 1: 387 390.
- Hosseini, S.M., Shahbazizadeh, S., Khosravi-Darani, K. and Mozafari, M. R. 2013. Tabebuiaavellanedae: Food and Function. Current Nutrition & Food Science, 9(2): 1-6.
- Hur, J.M., Yang, CH; Han, S.H., Lee, S.H., You, O.Y. and Park, J.C. 2004. Antibacterial effect of *Phellinuslinteus* against methicillin- resistant *Staphylococcus aureus*. *Fitoterapia*, 73: 603-605.
- Jonathan, S.G. and Fasidi, I.O. 2003. Antimicrobial activities of two Nigerian edible macrofungiLycoperdonpusilum and Lycoperdongiganteus. *Afri. J. Biom. Res.*, 6: 84-90.
- Kung HN., Yang MJ., Chang CF., Chau YP., Lu KS. 2008. In vitro and in vivo wound healing-promoting activities of beta-lapachone. *Am J Physiol Cell Physiol.*, 295(4):C931-43.doi: 10.1152/ajpcell.00266.2008.
- Machado TB., Pinto AV., Pinto MC., Leal IC., Silva MG., Amaral AC., Kuster RM., Netto-dosSantos KR. 2003. In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. *Int J Antimicrob Agents*. 21(3):279-84.
- Maddaly Ravi, SaiLata De, Syed Azharuddin and Solomon F D Paul 2010. The beneficial effects of Tabebuiaavellanedae focusing on its immunomodulatory and antioxidant properties. Nutrition and Dietary Supplements. 2: 73–83.
- Mehrotra, M., Wang, G. and Johnson, W.M. 2000. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exofoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. *J ClinMicrobiol.*, 38, 1032–1035.
- Monday, S.R. and Bohach, G.A. 1999. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. *J. Clin. Microbiol.*, 37:3411-3414.
- Mosy O.M., Sharoba A.M., EL Desouky A.I., Bahlol H.E.M. and Abd El Mawla E.M. 2014. Production and evaluation of some extruded food products using Tabebuiaavellanedae. *Annals of Agric. Sci.*, Moshtohor. 52(4): 495–510.
- Park BS., Kim JR., Lee SE. 2005. Selective growth-inhibiting effects of compounds identified in Tabebuiaimpetiginosa bark on human intestinal bacteria *J Agric Food Chem.*, 53,4: 1152-7.
- Park BS., Lee HK., Lee SE. 2006. Antibacterial activity of Tabebuiaimpetiginosa against Helicobacter pylori J Ethnopharmacol., 105: 1-2.
- Pereira EM., Machado Tde B., Leal IC., Jesus DM., Damaso CR, Pinto AV., Giambiagi-deMarval M., Kuster RM., Santos KR. 2006. Tabebuiaavellanedaenaphthoquinones: activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis. *Ann Clin Microbiol Antimicrob.*, 22;5:5.
- Pyne, S. K., Bhattacharjee, P. and Srivastav, P. P. (2017): Tabebuiaavellanedae and Its Bioactive Molecules: *Review*. *Indian Journal of Nutrition*. 4 (2): 1-6.