

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 10, Issue, 03, pp.67057-67061, March, 2018 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

ANALYSIS OF HAEMATOLOGICAL VALUES IN PATIENTS WITH CLEFT LIP AND/OR CLEFT PALATE

^{1,*}Dr. Rajesh S. Swami and ²Dr. Prashant M. Battepati

¹SDM College of Dental Sciences, Sattur, Dharwad ²MDS, Assistant Professor, Pediatric Dentistry Division, Department of Preventive Dental Sciences, Taif University

ARTICLE INFO	ABSTRACT
Article History: Received 19 th December, 2017 Received in revised form 24 th January, 2018 Accepted 09 th February, 2018 Published online 30 th March, 2018	 Aim: To analyse the haematological values in patients with cleft lip and palate and compare it with normal values. Methods: Patient case records (N=821) were accessed to collect the data. The following information was collected from patient records: Age, Gender, type of cleft, Haematological values like Total leukocyte count, Differential leukocyte count, Haemoglobin, Packed cell volume, Erythrocyte sedimentation rate. Pearson's chi-square test was performed for data analysis.
<i>Key words:</i> Haematological, Cleft lip, Cleft Palate.	 Results: Compared to normal values, in cleft individuals there was increase in parameters like total leukocyte count (in 41.4% cases), neutrophil count (in 7.4% cases), lymphocyte count (in 17.4% cases), Erythrocyte Sedimentation Rate (in 73.4% cases) which were statistically significant and there was a decreased monocyte count (in 99.1% cases), haemoglobin (in 55.5% cases), Packed Cell Volume (in 15.8% cases) which also showed statistical significance. Conclusion: Increased infections and compromised nutrition occurring in the cleft patients due to anatomical deficit may reflect on the haematological values.

Copyright © 2018, *Dr. Rajesh S. Swami and Dr. Prashant M. Battepati.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Dr. Rajesh S. Swami and Dr. Prashant M. Battepati. 2018. "Analysis of haematological values in patients with cleft lip and/or cleft palate", International Journal of Current Research, 10, (03), 67057-67061.

INTRODUCTION

Craniofacial anomalies like Cleft Lip Palate (CLP), Cleft Lip alone (CL) and Cleft Palate alone (CP) affect about 1.09 for every 1000 live births in India (Reddy et al., 2010). The cleft patients have a plethora of etiologic risk factors, psychological and physiological problems, complications and also the treatment modalities which the families are not aware of. It is estimated that there are about 10 lakh cases of untreated oral clefts in India (Singh, 2009). Cleft lip and palate may give rise to many complications in affected individuals including the feeding problems and recurrent infections like otitis media, cholesteatoma (Sheahan et al., 2003), maxillary sinusitis (Jaffe, 1971) and bronchopneumonia (Christensen et al., 2004). The parents of such children are more concerned about craniofacial anomaly rather than the complications that may arise from the clefts in those patients. Children born with cleft lip and palate and no other known malformations appear to have an increased risk of mortality not only in the first year of life but throughout childhood and adulthood (Christensen et al., 2004).

The cleft patients are known to have difficulty in breastfeeding due to the various contributing factors like anatomic factors where in the baby fails to create negative intraoral pressure ⁽⁶⁾ and also sometimes there is negligence by families to feed their children. Gil-Da-Silva-Lopes et al. (2013) carried out a study that showed around 78% of families had neglected breastfeeding the cleft child and hence feeding in cleft babies is a robust challenge. Breastfeeding may, in addition to the well-known passive protection against infections during lactation, have a unique capacity to stimulate the immune system of the offspring perhaps with numerous long-term positive effects (Hanson, 1998). Any alternations in the immune system can bring about variations in hematological values, especially the total leukocyte count, erythrocyte sedimentation rate and specifically the differential leukocyte counts. Anemia can affect the child both physically and psychologically thereby disturbing the total body function. In India, about three quarters of children showed that they were having some degree of anemia (IIPS, 2000).

METHODOLOGY

This retrospective study involved accessing medical records of cleft patients admitted to Craniofacial Unit at SDM College of Dental Sciences, Dharwad for a 24-month period between

*Corresponding author: **Dr. Rajesh S. Swami**, SDM College of Dental Sciences, Sattur, Dharwad. January 2011 and December 2012. Total of 821 patient records were accessed. The study chiefly involved assessing the case data which involved the case history and laboratory reports. The following information was collected from the patient records: Age, Gender, (Education, Occupation and Income) of the parent, Hematological values like Total leukocyte count, Differential leukocyte count, Erythrocyte sedimentation rate, Hemoglobin and Packed Cell Volume in cleft patients

The inclusion criteria for the patients who were diagnosed with cleft lip and/or palate has been mentioned below

- Patients between the age ranges from birth to 12 years.
- Patients who were not operated for the clefts/not on any treatment/medication.
- Patients not associated with any syndromes.
- Patients not suffering from any chronic systemic illness like immunocompromising conditions, bleeding/clotting disorders, leukemia, juvenile diabetes etc.

The data of cleft type was documented according to the Kernahan and Stark's classification ⁽¹⁰⁾. For ease of comparison and statistical analysis the subjects were grouped into Neonate, Infancy, Toddler and Childhood ⁽¹¹⁾. The cleft types were also further grouped into Cleft lip and Alveolus, Cleft Palate, Cleft lip and Palate. The data was collected and added into Microsoft Excel sheets. In the process, all the patient records were coded and patient's identity was concealed. The waiver of consent was taken from the Institutional Ethics Committee before conducting the research. The SPSS software was used for the statistical analysis to do the chi-square test and significance level adopted was 5% (P < 0.05).

RESULTS

A total of 821 cases were assessed and statistically analysed using the SPSS software to correlate the values for statistical significance by doing Pearson's Chi-Square test (Pvalue=0.05). 41.4% of the total cases showed a raise in Total Leukocyte count (Table 2). The parameter is statistically significant (p=0.049). 7.4% of the total cases showed an increase in the Neutrophil count and is statistically significant (p=0.010). 4.9% of the total cases showed an increase in the Eosinophil count. 17.9% of the total cases showed an increase in Lymphocyte count out of which 8.9% were Cleft palate only and is statistically significant (p=0.043). 99.1% of the total cases showed reduced Monocyte count levels and is statistically significant (p=0.005). 55.5% of the total cleft cases showed decrease in Haemoglobin levels and is statistically significant (p=0.000). 15.8% of the cases showed sub-optimal PCV and the parameter is statistically significant (p=0.000). 73.4% of the total cases showed raise in Erythrocyte Sedimentation Rate. 17.7% of the cases had a history of recurrent infections and the parameter is statistically significant (p=0.006).

DISCUSSION

The intention behind assessing the haematological values in cleft patients was to see if there was a difference in the values and try to correlate that with the problems and complications that would usually arise in patients because of the anatomical deficit. Although it is obvious that the haematological values would be raised in cleft patients due to infections or any complications, our study may thrive to show the importance of assessing the haematological values of non-operated cleft patients time and time again so that the patient's systemic health status is maintained right from the beginning till surgery. Since haematological analysis is highly sensitive against any infections/inflammatory reactions the clinician can rely on the data and proceed for further investigations. The total leukocyte count was found to be increased in 41.4% of the total cases and was found to statistically significant (Table 2). Our study also showed that 17.7% of the total cleft cases gave a history of recurrent infections (Table 10) but the details of infection (type, site, degree) were not available but it reflected the raise in total leukocyte count mentioned above. This finding was seen less pronounced in other study conducted by Fadeyibi et al. (2010) which showed only 9.8% increase of total leukocyte count in cleft patients.

Table 1. Prevalence pattern of Cleft types among both Genders

Gend	ler		Cleft type		Total
		Cleft Lip and Alveolus	Cleft Palate	Cleft Lip, Alveolus and Palate	
FEMALE	Count	93	156	101	350
	% of Total	11.3%	19.0%	12.3%	42.6%
MALE	Count	153	177	141	471
	% of Total	18.6%	21.6%	17.2%	57.4%
Total	Count	246	333	242	821
	% of Total	30.0%	40.6%	29.5%	100.0%
Pearson	Value	Degree of Freedom		P-value	
Chi-Square	4.842	2		.089	

Table 2. Comparison of Total Leukocyte Count in cleft patients with Normal values

Cleft type		Total Leukocyte Count			Total
		HIGH	LOW	NORMAL	
Cleft Lip and Alveolus	Count	113	12	121	246
-	% of Total	13.8%	1.5%	14.7%	30.0%
Cleft Palate	Count	138	6	189	333
	% of Total	16.8%	0.7%	23.0%	40.6%
Cleft Lip, Alveolus and Palate	Count	89	11	142	242
1 /	% of Total	10.8%	1.3%	17.3%	29.5%
Total	Count	340	29	452	821
	% of Total	41.4%	3.5%	55.1%	100.0%
Pearson Chi – Square	Value	Degree of Freedom		P-value	
1	9.549	4		.049	

Cleft type		Neutro	phil Count		Total
		HIGH	LOW	NORMAL	
Cleft Lip and Alveolus	Count	15	6	225	246
	% of Total	1.8%	0.7%	27.4%	30.0%
Cleft Palate	Count	24	21	288	333
	% of Total	2.9%	2.6%	35.1%	40.6%
Cleft Lip, Alveolus and Palate	Count	22	3	217	242
	% of Total	2.7%	0.4%	26.4%	29.5%
Total	Count	61	30	730	821
	% of Total	7.4%	3.7%	88.9%	100.0%
Pearson Chi – Square	Value	Degree of Freedom		P-value	
1	13.190	4		.010	

Table 3. Comparison of Neutrophil count in cleft patients with Normal values

Table 4. Comparison of Eosinophil Count values in cleft patients with Normal values

Cleft type		Eosinophil C	Count	Total
		HIGH	NORMAL	
Cleft Lip and Alveolus	Count	13	233	246
•	% of Total	1.6%	28.4%	30.0%
Cleft Palate	Count	15	318	333
	% of Total	1.8%	38.7%	40.6%
Cleft Lip, Alveolus and Palate	Count	12	230	242
•	% of Total	1.5%	28.0%	29.5%
Total	Count	40	781	821
	% of Total	4.9%	95.1%	100.0%
Pearson Chi – Square	Value	Degree of Freedom	P-va	lue
*	.191	2	.90	9

Table 5. Comparison of Lymphocyte count in cleft patients with Normal values

Cleft type		Lymphocyte	Lymphocyte Count		
		HIGH	NORMAL		
Cleft Lip and Alveolus	Count	39	207	246	
-	% of Total	4.8%	25.2%	30.0%	
Cleft Palate	Count	73	260	333	
	% of Total	8.9%	31.7%	40.6%	
Cleft Lip, Alveolus and Palate	Count	35	207	242	
* ·	% of Total	4.3%	25.2%	29.5%	
Total	Count	147	674	821	
	% of Total	17.9%	82.1%	100.0%	
Pearson Chi – Square	Value	Degree of Freedom	P-valu	ie	
-	6.310	2	.043		

Table 6. Comparison of Monocyte Count in cleft patients with Normal values

Cleft type		Monocyte C	Count	Total
		LOW	NORMAL	
Cleft Lip and Alveolus	Count	240	6	246
-	% of Total	29.2%	0.7%	30.0%
Cleft Palate	Count	333	0	333
	% of Total	40.6%	0.0%	40.6%
Cleft Lip, Alveolus and Palate	Count	241	1	242
	% of Total	29.4%	0.1%	29.5%
Total	Count	814	7	821
	% of Total	99.1%	0.9%	100.0%
Pearson Chi – Square	Value	Degree of Freedom	P-va	lue
	10.740	2	.00	5

Table 7. Comparison of Haemoglobin Levels in cleft patients with Normal values

Cleft type		Haemoglobi	n Level	Total
		LOW	NORMAL	
Cleft Lip and Alveolus	Count	138	108	246
	% of Total	16.8%	13.2%	30.0%
Cleft Palate	Count	208	125	333
	% of Total	25.3%	15.2%	40.6%
Cleft Lip, Alveolus and Palate	Count	110	132	242
	% of Total	13.4%	16.1%	29.5%
Total	Count	456	365	821
	% of Total	55.5%	44.5%	100.0%
Pearson Chi – Square	Value	Degree of Freedom	P-valu	ıe
	16.462	2	.000)

Cleft type		Packed	Cell Volume	;	Total
		HIGH	LOW	NORMAL	
Cleft Lip and Alveolus	Count	41	23	182	246
	% of Total	5.0%	2.8%	22.2%	30.0%
Cleft Palate	Count	31	64	238	333
	% of Total	3.8%	7.8%	29.0%	40.6%
Cleft Lip, Alveolus and Palate	Count	15	43	184	242
	% of Total	1.8%	5.2%	22.4%	29.5%
Total	Count	87	130	604	821
	% of Total	10.6%	15.8%	73.6%	100.0%
Pearson Chi – Square	Value	Degree of Freedom		P-value	
Ĩ	23.411	4		.000	

Table 8. Comparison of Packed Cell Volume values in cleft patients with Normal values

Table 9. Comparison of Erythrocyte Sedimentation Rate values in cleft patients with Normal values

Cleft type		Erythrocyte Sedime	entation Rate	Total
		HIGH	NORMAL	
Cleft Lip and Alveolus	Count	173	73	246
-	% of Total	21.1%	8.9%	30.0%
Cleft Palate	Count	255	78	333
	% of Total	31.1%	9.5%	40.6%
Cleft Lip, Alveolus and Palate	Count	175	67	242
	% of Total	21.3%	8.2%	29.5%
Total	Count	603	218	821
	% of Total	73.4%	26.6%	100.0%
Pearson Chi – Square	Value	Degree of Freedom	P-va	lue
-	3.061	2	.21	6

Table 10. Comparison of Cleft types with History of Recurrent Infections

Cleft type		H/O Recurrent I	nfections	Total
		ABSENT	PRESENT	
Cleft Lip and Alveolus	Count	218	28	246
-	% of Total	26.6%	3.4%	30.0%
Cleft Palate	Count	269	64	333
	% of Total	32.8%	7.8%	40.6%
Cleft Lip, Alveolus and Palate	Count	189	53	242
	% of Total	23.0%	6.5%	29.5%
Total	Count	676	145	821
	% of Total	82.3%	17.7%	100.0%
Pearson Chi – Square	Value	Degree of Freedom	P-val	ue
*	10.217	2	.000	6

Eosinophilia has always been associated with cleft lip and palate (Greer et al., 2014). The eosinophil counts were raised in 4.9% cases (Table 4) and the parameter was not statistically significant. Singhal et al. (2014) conducted a study to show and correlate the eosinophilia in cleft patients which revealed eosinophilia in 20.6% cases. Kumari et al. (2009) also correlated eosinophilia in cleft cases. The other differential counts like Neutrophil counts, Lymphocyte counts showed uniform increase in the values and were statistically significant (Table 3, Table 5). The erythrocyte sedimentation rate was seen to be increased in 73.4% of the total cases (Table 9). Since ESR is a non-specific indicator of inflammation it implicates the presence of underlying infections in the body and can be used as a diagnostic marker by the clinician to detect any secondary infections or inflammations in cleft patients. Patients with Cleft Palate are known to have Eustachian tube dysfunction (16) which may cause food particles to lodge in the tube leading to middle ear infections like otitis media, cholesteatoma (Jaffe, 1971). They can also aspirate food particles into the upper airway through the palatine defects leading to respiratory tract infections like bronchopneumonia (Clarren, 1987). Since breast milk is known to protect against the underlying infections in the cleft child (Hanson, 1998), the pediatrician should pay special attention to the immune status of the child born with cleft lip

and palate by ensuring the feeding of colostrum and further breastfeeding to the optimal level so that further complications may be avoided to a certain extent and provide appropriate therapy for the infections. The hemoglobin assessment showed that 55.5% of the total cases were anemic (Table 7). Studies conducted by Fadeyibi et al. (2010), Singhal et al. (2014) showed the presence of anemia in cleft lip and palate patients. A low preconceptional iron status increases the risk for anaemia in offsprings (Casanueva, 2003), Krapels et al. (2004) showed that the dietary intake of iron in mothers who gave birth to cleft children was lower than the recommended daily intake. An awareness can be created in cleft afflicted families (genetic tendency) about the iron intake so that the anaemic condition can be avoided in cleft off springs. The occurrence of cleft palate in offspring of mice has been correlated to the presence of anemia ⁽¹⁹⁾. The hypothesis of correlating history of maternal anemia to orofacial clefting is not conclusive, but an implication for further research in this regard would pave the way for a new etiologic risk factor. The Packed Cell Volume was suboptimal in 15.8% cases and the parameter was statistically significant (Table 8). Adenekan (2012) conducted a study which showed that 18.6% of the cleft cases had supoptimal PCV, which is well within the observed range of our study. The data presented in our study about anaemia and packed cell volume in cleft patients should create an awareness among the organizations and clinicians for a more holistic approach towards treating the cleft patients.

Conclusion

Children with untreated orofacial clefts show considerable alteration in haematological values compared to the normal values. Anatomical defect leading to increased risk of infections and difficulty in feeding may act as the contributing factors for such variation.

Acknowledgement

- Indian Council of Medical Research, New Delhi
- Department of Pedodontics, SDM College of Dental Sciences
- Dr. M V Muddapur, Department of Biostatistics and Informatics, SDM College of Dental Sciences

Conflict of Interest: None

Funding Statement: This study was funded by Indian Council of Medical Research as part of Short Term Studentship program for the year 2014.

REFERENCES

- Adenekan AT, Faponle AF, Oginni FO. 2012. Pre-operative haematological investigations in paediatric orofacial cleft repair: any relevance to management outcome? *African journal of paediatric surgery: AJPS.* 9(1):52-6.
- Casanueva E, Pfeffer F, Drijanski A, Fernandez-Gaxiola AC, Gutierrez-Valenzuela V, Rothenberg SJ. 2003. Iron and folate status before pregnancy and anemia during pregnancy. *Annals of nutrition & metabolism*. 47(2):60-3.
- Christensen K, Juel K, Herskind AM, Murray JC. 2004. Long term follow up study of survival associated with cleft lip and palate at birth. Bmj., 328(7453):1405.
- Clarren SK, Anderson B, Wolf LS. 1987. Feeding infants with cleft lip, cleft palate, or cleft lip and palate. *The Cleft palate journal*. 24(3):244-9.
- Fadeyibi IO, Fasawe AA, Jewo PI, Adeniyi AA *et al.* 2010. Nutritional and haematological parameters of cleft lip and/or palate patients in Lagos, Nigeria. *Nigerian Journal of Plastic Surgery.* 6(1):16-22.
- Gil-da-Silva-Lopes VL, Xavier AC, Klein-Antunes D, Ferreira AC, Tonocchi R, Fett-Conte AC, *et al.* 2013. Feeding Infants With Cleft Lip and/or Palate in Brazil: Suggestions to Improve Health Policy and Research. The Cleft palatecraniofacial journal: official publication of the American Cleft Palate-Craniofacial Association. 50(5):577-90.
- Greer, Foerster, Lukens, Rodgers. 2004. Wintrobe Clinical Haematology. 2nd ed. Vol. 1. Philadelphia: Lipincott Williams and Wilkins; pp. 325–9.

- Hanson LA. 1998. Breastfeeding provides passive and likely long-lasting active immunity. Annals of allergy, asthma &immunology: official publication of the American College of Allergy, Asthma, & Immunology. 81(6):523-33; quiz 33-4, 37.
- International Institute for Population Sciences (IIPS) and ORC Macro. 2000. National Family Health Survey (NFHS-2), 1998–99: India. Mumbai: IIPS.
- Jaffe BF, DeBlanc C. 1971. Sinusitis in children with cleft lip and palate. *Archives of Otolaryngology*. 93(5):479-82.
- Jurkiewcz MJ. 1990. Cleft lip, Cleft palate; in Sando WC. Plastic Surgery: Principles and Practice. 1st ed. Mosby CV Company. St. Louis, USA, Vol. 1: 59-96.
- Kernahan DA. 1971. The striped Y--a symbolic classification for cleft lip and palate. Plastic and reconstructive surgery. 47(5):469-70.
- Krapels IPC, van Rooij IALM, Ocké MC, West CE, van der Horst CMAM, Steegers-Theunissen RPM. 2004. Maternal Nutritional Status and the Risk for Orofacial Cleft Offspring in Humans. *The Journal of Nutrition*. 134(11):3106-13.
- Kumari S, Choudhary AK, Negi G, kumar R, Harsh M, Pathak VP. 2009. Prevalence of anemia among the general population of Bihar, India. *Ind Med Gaz.*, 11:418–21.
- Natsume N, Sugimoto S, Yoshida K, Kawai T. 1999.Influence of maternal anaemia during early pregnancy on the development of cleft palate. *The British journal of oral & maxillofacial surgery*. 37(4):330-1.
- Reddy SG, Reddy RR, Bronkhorst EM, Prasad R, Ettema AM, Sailer HF, et al. 2010. Incidence of cleft Lip and palate in the state of Andhra Pradesh, South India. Indian journal of plastic surgery: official publication of the Association of Plastic Surgeons of India. 43(2):184-9.
- Sheahan P, Miller I, Sheahan JN, Earley MJ, Blayney AW. 2003. Incidence and outcome of middle ear disease in cleft lip and/or cleft palate. *International journal of pediatric* otorhinolaryngology. 67(7):785-93.
- Singh SK. 2009. Smile Train: The ascendancy of cleft care in India. Indian journal of plastic surgery: official publication of the Association of Plastic Surgeons of India. 42 Suppl: S192-8.
- Singhal S, Negi G, Chandra H, Chandra S, Gaur DS, Rajan M. 2014. Hematological parameters in patients of cleft lip and cleft palate with special reference to eosinophil counts. *The Journal of craniofacial surgery*. 25(1):103-5.
- Williams K, Thomson D, Seto I, Contopoulos-Ioannidis DG, Ioannidis JPA, Curtis S, *et al.* 2012. Standard 6: Age Groups for Pediatric Trials. Pediatrics. 129(Supplement 3):S153-S60.