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1. INTRODUCTION 

Let   ,,,, ℂ and 0x , then the generalized fractional calculus operators involving Appell function 

by Saigo and Maeda [9] by means of the following equations:
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The general class of polynomials is defined by Srivastava [16, p.1, Eq. (1)] in the following manner:
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where u is an arbitrary positive integer and the coefficients 

The series representation of -function is introduced by Chaurasia et al. [2] as follow:
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, then the generalized fractional calculus operators involving Appell function 

by Saigo and Maeda [9] by means of the following equations: 
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The general class of polynomials is defined by Srivastava [16, p.1, Eq. (1)] in the following manner:

,            … 2, 1, 0, = w                                                                                   

where u is an arbitrary positive integer and the coefficients swA ,  (w, s  0) are arbitrary constants, real or complex.
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The general class of polynomials is defined by Srivastava [16, p.1, Eq. (1)] in the following manner: 
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 The existence of the  -function defined on (1.4) depends on the following conditions.  
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For the convergence conditions and other details of Aleph-function, (see: S u dland et al. [18], [19]) and is defined in terms of the 
Mellin- Barnes type integrals as following manner (see, e.g., [12], [13]).  
 

Remark 1.1 On setting )1,...,=1(= rii  in (1.4), yields the I-function due to Saxena [11], defined in following manner:  
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 Remark 1.2 If we set )1,...,=1(= rii  and 1=r , then (1.4) reduces to the familiar Fox H-function [3]:  
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 are the kernel  nm

iqip
,

1;1,,
  can be obtained from (1.5).  

A thorough and wide-ranging account of the H-function is obtainable from the monographs written by Kilbas and Saigo [4], 
Mathai et al. [6], Prudnikov et al. [7] and Srivastava et al. [17]. 
 
 Now, we recall the generaliged hypergeometric series defined by (see: [5, 8]):  
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 where n)(  is the Pochhammer symbol defined (for  ℂ ) by  
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We now establish: 
 

Lemma 1: If  )( > 0, 0 ,   = 1, 2, 3, …, c is a positive number and   is a complex number, then there holds the relation 
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where })(,)(,)({min)(,0)(   , ),(   represent the  sequence  of  

parameters 
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, and )(313   F  is the generalized hypergeometric function, defined in [4].  

Proof: We first operate the fractional  integral  operator  (1.1)  with 
  )()( ctttf  and express Appell Function 3F  

and 
  )( ct  in terms of their equivalent series by means of the formula 

 

q

q

q

c

t

q
cct














 










 

0 !

)(
)(                                                                                                 ……………..(1.15) 

 

On interchange  the order of integration and summation, which is permissible due to the absolute convergence, and evaluate the 
inner integral by means of the formula given by Saxena, Ram  and Kalla [14,  p. 100, eq .(1.20)] 
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where ,0)(    )(s max {- )(  , - )(  , )(   }, the result (1.14) follows. When 0 , (1.8) reduces to 

the result given in [1, p. 334, Eq. (1.6)]. 
 

Lemma 2:  If  )( > 0,  > 0,   = 1, 2, 3, … , c  is a positive number and   is a complex number, then we have 
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where 01})(,)(,)({min)(,0)(  
 

 

Proof: To  establish lemma 2, we take
  )()( ctttf   in equation (1.2) and write series expansions for the Appell 

function and 
  )( ct , then interchanging the order of integration and summation, which is permissible due to  the absolute 

convergence and evaluating the inner integral by means of the formula given by Saxena, Ram and Kalla [14, p. 100, eq. (1.21)]   
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where 0)(   ,   )( < 1 + min { )(   , )(   ,  - )(   }and using the well known relation  
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 ,   the  desired  result  (1.17)  is obtained. For 0 , (1.17) yields the result given in [1, p. 335, Eq. (1.10)]. 

 
2. Generalized Fractional Integral Formulas 

If )( tf 
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positive integer and the coefficients swA ,  
 
( w, s   0 ) are arbitrary constants, real or complex. 
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0 . u is an arbitrary positive integer and the coefficients swA ,  (w, s 0) are arbitrary constants, real or complex. 

The proof of the results (2.2) and (2.3) can be developed on similar lines to that followed for the results (1.12) and (1.15). 
 
3.   Interesting Special Cases 
 
( I )    If we set h = r = 0, (2.2) and (2.3) yield 
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( II )  If we put     = 0 in (2.2), where the right hand sides represents the Saigo operators, we get 
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which holds under the same conditions as given with (2.2) for    = 0. Next if we put    = 0 in (2.3) and use the identity                                
 
we arrive at 
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Which holds under the same conditions as given with (2.3) for   = 0, (3.3) and (3.4) are recently given by Suthar et al. [22]. 

When 0  , Lemma 1 and 2 are reducing to the results given by Saigo and Raina [10].  

 
4. Conclusion 

We have established two new integral relations involving the product of the Srivastava’s polynomials and the  -function. We can 
also derived analogous result in the form of Riemann-Liouville and Erdélyi-Kober fractional integral operators, which have been 
depicted in corollaries. In another direction, using remark (1.1) and (1.2), we can also find the numerous result in the form of I-
function and H-function. Therefore, the results presented in this article are easily converted in terms of a similar type (1, 10, 14, 15, 
20, 21) of new interesting integrals with different arguments after some suitable parametric replacements. 
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