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INTRODUCTION heat transfer mode. Within 1983 — 1999 experiments were
conducted in Ukraine for a variety of steel products quenched
in agitated water salt solutions. Later, 1Q-2 and IQ-3
technologies were tested in US (Aronov, Kobasko, et al., 1999
— 2002), including automotive parts (coil springs, kingpins,
torsion bars, bearing products, ball studs, etc.), fasteners of
different types, and tool products: punches, dies, die
components, etc., (Kobasko, Aronov et al, 2010). For the
above referenced technologies computer software package
HART-TANDEM was developed in early 1980 (Morhuniuk,
1982; Kobasko and Morhuniuk, 1981, 1983, 1985) to
determine optimal IQ conditions for each of the subject parts.
Along with computer package, analytical equations were
residual stresses and super — strengthening effect. A long ago, achieved for cooling time calculations. Simplified methods for

two intensive water quenching methods 1Q-2 and 1Q-3 were cooling.tirr.le cglcglat.ions dgring quenching ste.el parts of any
developed and discussed in published within 1980 — 1992 configuiration in liquid media were developed in 1969 — 1992

papers and books (Kobasko, 1980; Kobasko, 1992). The 1Q-3 (Kpbasko, 1969; Kobasko, 1992). These m;thods manipulate
technique, also known as “direct convection cooling,” and the with two main equations. The first deals with the duration of

: . s transient nucleate boiling process and its final version was
IQ-2 technique, a three-step quenching process that initially . i .
cools under the nucleate boiling mode and then the convection published by Sprlnger-Verlag n 1992 (Kobasko, 19,92)' The
second deals with the generalized equation for cooling time

*Corresponding author: Nikolai Kobasko, calculation during direct convection. Its final version was
Intensive Technologies Ltd., 68/1 Peremohy ave., Kyiv, Ukraine 03113 published in a book in 1980 (Kobasko, 1980). Full time of

At present time a tendency exists to switch from oils and high
concentration of polymers as the quenchants to plain water or
low concentration of water salt solutions due to environment
problems.  Oil as quenchant was used to eliminate quench
cracks and reduce distortion after quenching. In last decades
was shown that accelerated cooling reduces distortion if film
boiling is completely absent and uniform martensitic shell is
formed around the surface of steel parts during hardening
process (Kobasko, Aronov et al., 2010). Along with decreasing
distortion intensive quenching (IQ) increases significantly
service life of steel parts due to creation of high compressive




60368

Nikolai Kobasko et al. Contemporary methods for cooling time calculation and hardening

cooling during quenching consists of three periods of heat
transfer modes (film boiling, nucleate boiling and convection).
Film boiling, especially local film boiling, should be and can
be eliminated completely using special additives and other
possibilities. This problem is discussed below.

Cooling time calculation during hardening of steel parts

Cooling time calculations during quenching of steel parts is the
first approach in recipes development. It is enough to calculate

duration of transient nucleate boiling process 7,, and duration

of convection 7 at the area of maximal thermal inertia of

any steel part to provide engineers with full time of cooling
written as, Eq. (1):

T. =T, t7T

conv (D

It has been made thousands of calculations since 1980 using
Eq. (2) and Eq. (3) and published hundreds papers in different
scientific and technical journals and books discussing benefits
and shortcomings of mentioned equations. At present they are
public domain and are widely used in heat treating industry.
Generalized Eq. (2) was constructed to calculate duration of
transient nucleate boiling mode known as self — regulated
thermal process (Kobasko, 1992).

o =024k +321m 2 | K @

9, |a

1722(8,-9)1°. 1 3
4 =ﬂ|:(jl€1):| ’ 911 =B|:a00w(911 +9“h):| '

Based on regular thermal condition theory of Kondratjev
(Kondrajev, 1957), it has been proposed a generalized
equation (3) for calculating cooling (heating) time of the

objects of any configuration in condition of 0< Bi, <o
(Kobasko, 1980):

kBi, 1,-T K
T= +1 n 3)
2.095+3.867Bi, T'-T, )|aKn
a - kBi, ) )
The value =5 095 +3.867 Bi, is responsible for

irregular thermal process and is true for plate like forms when
k = 1, for cylindrical different forms when k = 2 , and for
spherical forms when k — 3. Note that

B I,, is generalized Biot number and is determined as, Eq. (4):

a S
Bi, =—K— (4
rETRY )

Kn is Kondratjev number; K is Kondratjev form factor in m* ;
1, is initial temperature in Cor in °K; T  is bath

temperature; « is heat transfer coefficient (HTC) in

W/m*K ; A is thermal conductivity of steel in W /m K ;

. . 2 . . 3
S is surface in m~ ; V is volume in m"™ .

There is an universal interconnection between Kn and Biy
numbers (Kondrajev, 1957) and can be approximated by one
curve which has analytical presentation:

Bi,
.2 . 0.5
(Bi, +1.437Bi, +1)

Kn= %)

Eq. (5) is an universal correlation of regular thermal condition
theory of Kondratjev and is often presented as

Kn =yBi, (6)

where the non- smoothness
distribution y along with Eq. (7)

criterion of temperature

1
Y B 143781, +1)° ”
has also a meaning

T,-T, 1

T,-T, (8i?+14378i, +1]" o

Here I;f is average surface temperature; ];/ is average

volume temperature.
Direct convection

Direct convection during quenching means immediate decrease
surface temperature of steel parts below boiling point of liquid.
It means that transient nucleate boiling process is eliminated
and convection starts after immersion steel parts into liquid.
That cardinally simplifies cooling time calculations (Kobasko,

2002). Direct convection is provided when criterion (9) is
satisfied:
219, -9
Bl — ( o 1) (9)
4 +39,
where
L 1[2205,-8)]"
1 F; R >
4 =T,-1;;8, =T, -T; Bi is conventional

dimensionless Biot number; 7 .is saturation temperature;
p=341;
when nucleate boiling process should be eliminated. For
water, it occurs approximately at 100°C. However, finish
temperature of martensitic transformations for many steels is
below 100°C. In this case, universal correlation (10) can be
used as a criterion for elimination transient nucleate boiling
process (Kondratjev, 1957):

R is radius in m. Criterion (see Eq. (9)) is used
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|

sf -7, _ 1
v =T \Bi,? +1437Bi, +1

(10)

ﬂ

Efis average surface temperature; 7, is average volume

temperature.
Heat transfer coefficients of water flow and jets evaluation

The processes of heat transfer at the forced convection are
described by equations of similarity:

Nu = f(Re, Pr) (11)

wD
Here Nu is Nusselt number; Re =—— is Reynolds number;
v

v
Pr = — is Prandtl number.
a

The similarity equation for water flow is written as (Mikheev
and Mikheeva, 1977; Kobasko, et al., 2010):

Nu=0.021Re"*-Pr’* (Pr,, /Pr,)** -¢, (12)

where equivalent diameter d ., is evaluated from Eq. (13):

_#
u

d

eq

(13)

Some data related to explore Eq. (12) are provided in Table 1.

0.25
Table 1. Correction | Pr, versus pressure and temperatures
Pr,,
of water at the time of transition from nucleate boiling to a single-
phase convection

0.25
Water o Pressure, MPa (ﬂ] Average
temperature, °C Pr,
20 0.10 1.42 1.54
0.20 1.48
0.27 1.51
0.36 1.54
0.48 1.57
0.62 1.59
0.79 1.61
1 1.62
40 0.10 1.23 1.36
0.20 1.31
0.27 1.34
0.36 1.36
0.48 1.39
0.62 1.41
0.79 1.43
1 1.43

where S is the area of cross-section of the channel; U is the

full perimeter of the channel; Pr, is Prandtl number for a
quenchant far from the surface; Prsf. is Prandtl number for a

quenchant near a surface to be quenched. For fixtures of round
section the equivalent diameter d ., is equal to geometrical

diameter d . If E/d>50, theng,=1. At ﬁ/d<50 the
value ¢, is taken from Table 2.

Table 2. Values of dependence g, = f(%,Re) at the turbulent

mode
/)
Re Al
1 2 5 10 15 20 30 40 0
1-10* 1.65 1.50 1.34 1.23 1.17 | 113 1.07 1.03

2:10* 1.51 1.40 1.27 1.18 1.13 | 1.10 1.05 1.02

5-10* 1.34 1.27 1.18 1.13 1.10 | 1.08 1.04 1.02

1-10° 1.28 1.22 1.15 1.10 1.08 | 1.06 1.03 1.02

— === =]

1-10° 1.14 1.11 1.08 1.05 1.04 | 1.03 1.02 1.01

Methodology for evaluating heat transfer coefficients (HTCs)
during quenching with sprayers is well known and is widely
used in practice (Martin, 1990). HTC depends on many factors
shown in Fig. 1.
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Fig. 1. Positions of round holes in the sprayer used for intensive
quenching of large steel part

The average heat and mass transfer coefficients for impinging
flow from regular (square or hexagonal) arrays of round
nozzles (ARN) may be calculated as described in (Martin,

1990) with an accuracy of #15 %. The generalized
dimensionless equation has the following form, Eq. (14):
Nu=KK,Re’” Pr"* (14)
H/D 677005 ) B \/?(1 _ 22\/?)

K =|1+| =—=f ©OK,=

0.6 1+02(H/D-6)/f

(z/4)D?
I
sq/ hex

D is diameter of a nozzle in sprayer; H is a distance from a
nozzle (aperture) to the surface to be quenched; and A is the
area of the square, hexagon. Dimensionless numbers K; and K,
are connected to the geometry and arrangement of nozzles with
respect to the surface to be quenched. The Reynolds number
Re is related to the speed of the quenchant at the beginning of
the outlet from a nozzle, and the Prandtl number Pr
characterizes physical properties of the quenchant. The
dimensionless equation of similarity (Eq. (14)) is valid within
the boundaries of the following values and given parameters
(Martin, 1990):

2000 < Re < 100000
0.004 < £ <0.04
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Software HART-TANDEM for

processes

analyzing hardening

Despite of existing powerful computer codes like DANTE
(Dowling et al., 1996; Ferguson et al., 2002), HEARTS (Inoue
et al., 1992; Inoue, 2002) and many others, the old software
HART-TANDEM  (Morhuniuk, 1982; Kobasko and
Morhuniuk, 1983, 1985), developed in early 1980, can work
successfully if combined with the accurate experimental data
concerning cooling characteristics of different kinds of liquid
quenchants. Some results of computer simulation connected
with the hardening of roller (Fig. 2) are discussed below.
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Fig. 2. Drawing of a roller used for FEM calculations
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Fig. 3. CCT diagram used for FEM calculations: 1 is
austenite; 2 is martensite; 3 is bainite; 4 is pearlite; 5 is
martensite after full transformation; 6 is bainite after full
process transformation; 7 is pearlite after full process
transformation

A roller shown in Fig. 2 was made of low hardenability alloy
steel similar to AISI 52100 steel which has reduced content of
Mn and Cr. To simulate hardening of low alloy hardenability
steel, the CCT diagram (Fig. 3) was shifted to the left side for

10 seconds. Such shifting cannot provide through hardening of
the roller and will create uniform martensitic shell around the
roller to see creation of high compressive residual stresses and
observe distortion after intensive quenching. Along with
mowing CCT diagram left and right, one can move martensite
start temperature Ms up and down to simulate hardening of
low carbon steels and high carbon steels. This opportunity
were developed when designing software HART-TANDEM
(Kobasko and Morhuniuk. 1981; Morhuniuk, 1982; Kobasko
and Morhuniuk, 1983 - 1985). More information on simulation
quenching processes and investigation of residual stress
distribution in quenched steel parts one can find in the
published papers and proceedings (Arimoto et al, 1998 —
2002; Inoue, 2002; Freborg, et al., 2003, 2004; Ferguson et al.,
2005; Sugianto, et al., 2009).

It was assumed that in Fig. 3 all phases 1 — 7 have the same
thermal and physical properties and they are: thermal
conductivity is equal to 20 W/mK; density is equal to 7600
kg/m’; specific heat capacity is equal to 570 J/kgK, and

thermal diffusivity is equal to 4.61x10°m?* /s . Mechanical
properties of all phases are provided in Table 3. It should be
noted that not a long ago scientists came to conclusion that
bainitic structure can provide better mechanical and plastic
properties of steel as compared with martensite (Bhadeshia,
2001). It means that intensive quenching of steel parts should
be interrupted at proper time to provide the best condition for
bainitic transformations at the core of steel partds.

Table 3. Physical and mechanical properties of materials (see Fig.
3) taken into account during current and residual stress

calculations
T-re, E v a Rpoz, E, R,
°K t MPa MPa
Phase 1
293 208000 0.30 0.0000120 420 4428 730
423 200000 0.30 0.0000139 400 5000 640
873 160000 0.30 0.0000152 200 7800 550
973 120000 0.31 0.0000150 100 1170 300
1073 115000 0.35 0.0000180 70 240 130
1173 115000 0.40 0.0000300 60 110 90
Phase 2
293 208000 0.30 0.0000064 1200 10000 1700
423 200000 0.35 -0.0000170 | 130 1000 230
873 200000 0.37 -0.0000230 | 100 100 150
973 200000 0.40 -0.0000450 | 90 100 150
1073 200000 0.40 -0.0001540 | 100 100 190
1173 200000 0.30 0.0000140 380 5280 700
Phase 3
293 208000 0.30 0.0000120 420 4428 730
423 200000 0.30 0.0000139 400 5000 640
873 160000 0.30 0.0000152 200 7800 550
973 120000 0.31 0.0000150 100 1170 300
1073 115000 0.35 0.0000180 70 240 130
1173 115000 0.40 0.0000300 60 110 90
Phase 4
3 208000 0.30 0.0000120 420 4428 730
423 200000 0.30 0.0000139 400 5000 640
873 160000 0.30 0.0000152 200 7800 550
973 120000 0.31 0.0000150 100 1170 300
1073 115000 0.35 0.0000180 70 240 130
1173 115000 0.40 0.0000300 60 110 90

Notes: Yong’s modulus (E) describes tensile elasticity. It is defined as the
ratio of tensile stress to tensile strain. Poisson’s coefficient V' is a ratio of
transverse strain to axial strain named after Simeon Poisson. Thermal

expansion coefficient (X, is defined as a change in length or volume of a

material for a unite change in temperature; R P02 is yield strength in MPA; .

Rm is ultimate strength in MPa.
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Table 3 provides physical and mechanical properties of
austenite, bainite, pearlite and martensite versus temperature
which were used during simulation of hardening processes (see
Fig. 3). It should be noted that at present time there are many
very powerful codes developed for simulation carburizing and
quenching processes (Dowling, Pattok, Ferguson et al., 1996,
USA). Inoue and Arimoto discussed development and
implementation of CAE system “Hearts” for heat treatment
simulation based on metallo-thermo-mechanics (Inoue and
Arimoto, 1997, Japan). Using these powerful codes, hundreds
of very important investigations were fulfilled which were
successfully used in heat treating industry in the USA
(Ferguson, et al., 2002; Freborg et al, 2003; Freborg, et al,
2004; Ferguson et al., 2005 — 2007) and many others. Japanese
scientists predicted successfully crack formation and distortion
during quenching in liquid media using code “HEARTS”
(Arimoto, Lambert et al, 1999; Arimoto, Ikuta et al., 2004;
Arimoto, Horino et al., 2006; Arimoto, Yamanaka et al.,
2006) and many others. Contemporary codes for temperature
fields and stress- strain state calculations are developed in EC
and used for needs of heat treating industry.

Tempedrature field (K}

Here 0.24k =0.24x1.5 = 0.36; Kondratjev form factor K is
taken for prism 0.055m x 0.12m x 0.3m and is equal to

246 .4 x10°m>

4.61x10°m? /s . Calculations show correctness of both
methods in recipes development for hardening processes.

Thermal diffusivity of material is

Fig. 5 presents phase distribution in the section of the roller
(see Fig. 2) after 50 seconds of intensive quenching with the
heat transfer coefficient (HTC) equal to 10,000 W/m’K. As
follows from Fig. 5, martensite phase (2 and 5) creates a shell
at the surface of the roller average thickness of which is 7.5
mm in ID and 6 mm in OD areas. Ratio of martensitic layer to
minimal thickness of the roller is 0.1 and 0.125. It is a little
bit less than optimal thickness of hardened layer, but it is close
to it. It means that one should expect compressive residual
stresses at the surface of the roller after its complete cooling.

Prediction of crack formation

Fig. 6 shows the area, marked by red, where quench crack
formation starts first. A generalized Pisarenko — Lebedev
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Fig. 4. Temperature field in °K in the roller (see Fig. 2) at the moment 50 sec when dir x ect convection quenching with
heat transfer coefficient equal 10,000 W/m’K

Fig. 4 shows temperature field in the section of the roller at
the moment 50 sec. As seen from the Fig. 4, there are two
thermal inertia areas where cooling rate is minimal as
compared with other locations. Temperature in these two areas
is 750°K or 477°C. According to simplified calculations (see
Eq. (3)), cooling time from 830°C to 477°C is:

246.4x10°m?
4.61x10°m* /s

830°C -
477°C -

20°C
20°C

0.36+1n

T= =49.8sec -

criterion (Pisarenko and Lebedev, 1976) was selected as a
failure criterion during hardening of steel components, Eq.

(13):
zo+(-x)o, <o
Where; c
2=2

(15)

: o, is ultimate tensile strength; o, is ultimate

O

compressive stress; O, is greatest principal strength.
Formed
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Fig. S Micro- structure distribution in the section of the roller at the moment 50 sec when direct convection quenching with a heat
transfer coefficient equal to 10,000 W/m?K: 3 is bainite; 4 is pearlite; S is martensite
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Fig. 6. Area in the roller where micro- cracks can appear at the moment 50 sec when direct convection quenching with a heat
transfer coefficient equal to 10,000 W/m’K

Distortion in steel parts after quenching is generated by main
three reasons: stress distribution, specific volume density of
formed phases and local film boiling on the surface. Intensive
quenching decreases distortion due to martensitic shell and
absence of any film boiling during quenching. Fig. 7 supported
these ideas. Fig. 8 shows that the most intensive plastic
deformations take place within the martensitic shell and at the
boundary of martensite — bainite. As known, during phase
transformation the phenomenon super-plasticity takes place
which can effect intensity of plastic deformation, distortion

and stress distribution. Unfortunately, there are not enough
information on it to take into account during computer
simulation. Such information can be received experimentally
that needs special technique and is very costly. As expected, at
the surface of the roller high compressive residual stresses are
formed (see Fig. 9 and Fig. 10). On the working surface of the
roller compressive axial stresses reach 780 MPa (see Fig. 9)
and hoop compressive residual stresses reach 900 MPa (see
Fig. 10). At the core of the roller tensile axial and hoop
stresses are rather low and are within 180 — 300 MPa
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Fig. 7. Distortion U(2) distribution in m in the section of the roller at the moment 50 sec when direct convection quenching with a
heat transfer coefficient equal to 10,000 W/m’K.
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Fig. 8. Intensity of plastic deformation distribution in m in the section of the roller at the moment 50 sec when direct convection
quenching with a heat transfer coefficient equal to 10,000 W/m’K
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Fig. 9. Axial stresses distribution in MPa in the roller (see Fig. 2) at the moment 50 sec when direct convection quenching with heat
transfer coefficient equal 10,000 W/m>’K
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(see Fig. 9 and Fig. 10). As known, compressive residual
stresses increase fatigue and wear resistance and are reason for
decrease distortion of steel parts when martensitic shell is
formed around the surface uniformly.

$33 (MPa), 50s HTC = 10,000 Wim?K
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Fig. 10. Hoop stresses distribution in MPa in the roller (see Fig. 2)
at the moment 50 sec when direct convection quenching with heat
transfer coefficient equal 10,000 W/m’K

Alloy low hardenability steel

Compressive residual stresses and super-strengthening
phenomenon allow cardinal decrease of alloy elements in
steels. In Ukraine alloy low hardenability steel was patented
(Kobasko, 2017). Optimal hardenability steel which provides
optimal hardened martensitic surface layer with maximal
compressive residual stresses in it and bainitic or pearlitic
microstructure at the core after intensive quenching can be
designed using similarity ratio:

Dbr_ 0.35+0.095 (16)

opt

here DI is critical diameter in m; Dopt is diameter of steel part
in m to be quenched in agitated liquids.

A procedure of its use is as follows:

—_—

. A steel grade with certain chemical composition is

chosen.

2. The ideal critical size for this steel is determined.

3. The ratio DI/Dopt for specific steel part is evaluated
which must be in the range of 0.2-0.5.

4. The part is quenched in condition of 0.8 < Kn < 1
(Kobasko, 2002).

5. Intensive quenching is interrupted when optimal
quenched layer is achieved with maximal compressive
stresses at the surface.

6. The part is tempered at the temperature Ms or higher.

The history of such development started when it was noticed
that not through hardened but intensively quenched steel parts
has much better service life as compared with through
hardened steel parts (Kobasko et al., 2010). As a result, steels
with reduced content of Mn, Cr and Ni were recommended to
use to increase service life of machine components. Thus, a

method for optimizing chemical composition of steel is
proposed and a correlation is established to reduce cardinally
alloy elements in existing steel grades that results in high
compressive residual stresses at the surface of intensively
quenched steel parts and increasing strength and ductility of
material due to super-strengthening phenomenon. The
algorithm of optimization consists in reducing alloy elements
in existing alloy steel in 1.5-2 times and then lowering step-
by-step content of steel, beginning from the most costly alloy
element and ending the most cheaper one, until established
correlation is satisfied. The range of reduction is minimal and
during computer calculations can be chosen as 0,001 wt %.
The proposed approach can save alloy elements, energy,
increase service life of machine components and improve
environmental condition. The method is a basis for
development of the new low hardenability (LH) and optimal
hardenability steels.

DISCUSSION

As follows from the overview, there are many codes for
calculating temperature fields and stress — strain states during
quenching of steel parts. The most famous are DANTE (USA)
and HEART (Japan) which are widely used for quenching
processes simulation. Within the period of time 1978- 1998
authors successfully used software HART-TANDEM
(Morhuniuk, 1982, Kobasko and Morhuniuk, 1985) for
investigations hardening processes. Along with FEM
calculations, analytical equations were provided for cooling
time calculation (Kobasko, 1980) and calculation duration of
transient nucleate boiling process (Kobasko, 1992). Despite of
excellent software availability in many countries, a a rather big
problem in computer simulation of quenching processes still
exists. The matter is that boundary condition during quenching
in liquid media are unknown or provided incorrectly. That is
why in many cases results of computer simulations can be
wrong. To make correctly calculations and computer
simulations, one needs the DATABASE on liquid quenchants
used as the boundary condition during computer simulations.
As for analytical calculations, ITL (Kyiv, Ukraine) developed
software for calculating form factors values and optimal
chemical composition of steel to provide maximal surface
compressive residual stresses in quenched steel parts. Also,
IQCalc software is available for recipes development when
quenching in liquid media. Especially, such approach is very
important when quenching in liquid media under pressure to
perform austempering processes in cold liquids (Kobasko,
2016). Also, a great future have the hydrodynamics emitters
for elimination any film boiling during batch quenching by
proving resonance effects (Kobasko, 2016). It this case batch
quenching can be successfully used for quenching alloy low
hardenability steels, for example large gears, to eliminate
completely carburizing processes and receive huge benefits
(Kobasko, 2017).

Conclusion

1. Combining analytical methods of cooling time
calculation with the computer mode HART-TANDEM
and experimental data on cooling characteristics of
liquid quenchants provides engineers with the accurate
data on steel parts hardening process including all
aspects of phase transformation, stress distribution and
distortion to be used for recipes development.
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2. Developed later powerful computer codes DANTE
(USA), HEARTS (Japan) and many others can be
successfully used for investigation of any aspect of
hardening process, including carburization, quenching
in liquid media under pressure, and so on, if accurate
experimental initial data are available.

3. It is impossible to design universal software for cooling
time calculation based only on pure analytical equations
concerning duration of transient nucleate boiling
process and convection. Some accurate experimental
initial data are needed for this purpose.

4. Despite of existing highly developed methods of
inverse problem (IP) solving, the cooling characteristics
of liquid quenchants are not investigated yet correctly in
terms of using them for computer simulation. This
problem needs serious attention.

5. To make further progress in contemporary methods of
hardening based on computer simulations, a team of
leading specialists should be organized and investments
on the global level should be made for wide
investigations of liquid media as the quenchants.
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