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INTRODUCTION 
 
The geometric study of dynamical systems is an important chapter of contemporary mathematics due to its applications in 
Mechanics, Theoretical Physics. If M is a differentiable manifold that corresponds to the configuration space, a dynamical sy
can be locally given by a system of ordinary differential equations of the form 
evolution. Globally, a dynamical system is given by a vector field X on the manifold 
by the equations of evolution, �	 ∘ �(�) 	 = 	 �̇
of the most important papers on the topic entitled Mechanical
Geometry It has been used in this paper  using two complex structures, examined mechanical systems on symplectic geometry.
this paper, we study dynamical systems with Three Almost Complex Structures . After Introduction in Section 1, we consider 
Historical Background paper basic. Section 2 deals with the study Almost Complex Structures. Section 3 is devoted to study 
Lagrangian Dynamics .Section 4 is devoted to study Hamiltonian Dynamics
 
Almost Complex Structures 
 
Definition 2.1[http//en.wikipedia.org /wiki/almost complex structure
 
Let M be a smooth manifold. An almost complex structure
squares to −1) on each tangent space of the manifold, which varies smoothly on the manifold. In other words, we have 

a smooth tensor field J of degree (1,1) such that
the tangent bundle. A manifold equipped with an almost complex structure is called an
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The geometric study of dynamical systems is an important chapter of contemporary mathematics due to its applications in 
Mechanics, Theoretical Physics. If M is a differentiable manifold that corresponds to the configuration space, a dynamical sy

locally given by a system of ordinary differential equations of the form �̇� = 	 ��(�; 	�)
evolution. Globally, a dynamical system is given by a vector field X on the manifold �	 × � whose integral curves, 

�̇(�). The theory of dynamical systems deals with the integration of such systems
of the most important papers on the topic entitled Mechanical Equations with Two Almost Complex Structures on Symplectic 

metry It has been used in this paper  using two complex structures, examined mechanical systems on symplectic geometry.
this paper, we study dynamical systems with Three Almost Complex Structures . After Introduction in Section 1, we consider 

. Section 2 deals with the study Almost Complex Structures. Section 3 is devoted to study 
d to study Hamiltonian Dynamics. 

/wiki/almost complex structure] 

almost complex structure J on M is a linear complex structure (that is, a
space of the manifold, which varies smoothly on the manifold. In other words, we have 

(1,1) such that ��	 = − 1 when regarded as a vector bundle isomorphism
. A manifold equipped with an almost complex structure is called an almost complex manifold.
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The geometric study of dynamical systems is an important chapter of contemporary mathematics due to its applications in 
Mechanics, Theoretical Physics. If M is a differentiable manifold that corresponds to the configuration space, a dynamical system 

, which are called equations of 
whose integral curves, �(�) are given 

The theory of dynamical systems deals with the integration of such systems. One 
Equations with Two Almost Complex Structures on Symplectic 

metry It has been used in this paper  using two complex structures, examined mechanical systems on symplectic geometry. In 
this paper, we study dynamical systems with Three Almost Complex Structures . After Introduction in Section 1, we consider 

. Section 2 deals with the study Almost Complex Structures. Section 3 is devoted to study 

is a linear complex structure (that is, a linear map which 
space of the manifold, which varies smoothly on the manifold. In other words, we have 

isomorphism �	:	�ℳ 	 → 	�ℳ  on 
complex manifold. 
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Integrable almost complex structures 
 
Definition 2.2 [http//en.wikipedia.org /wiki/almost complex structure] 
 
Every complex manifold is itself an almost complex manifold. In local holomorphic coordinates  Z = x� + iy� one can define the 
maps 
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Proposition 2.3 
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Proposition 2.4 
 
The dual form �∗ of the above	� is as follows  
 
�∗�(���) = 		 �∗(���) = − ��� 
�∗�(���) = 		 �∗(− ���) = − ��� 
�∗�(���) = 		 �∗(���) = − ��� 
�∗�(���) = 		 �∗(− ���) = − ��� 
�∗�(���) = 		 �∗(���) = − ��� 
�∗�(���) = 		 �∗(− ���) = − ��� 
 
Theorem 2.5 [Mehmet Tekkoyun, 2009] Let ℳ  be m-real dimensional configuration manifold .A tensor field  � on �∗ℳ  is 
called an almost complex structure on �∗ℳ  if at every point p of �∗ℳ  , J is endomorphism of the tangent space ��

∗(ℳ ) such that  

�� = − 1		are complex is  �∗� = �∗ ∘ �∗ = − 1 is called structures are complex manifold 
 
Lagrangian Dynamical Systems 
 
Definition 3.1. A Lagrangian  function for a Hamiltonian  vector field X on ℳ  is a smooth function L ∶	Tℳ 	 → 	R such that 
 
i�ϕ � = dE�																																																																																																																																																																																																															(1)	 
 
Let  � be the vector field by  
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Let that Liouville  Vector field on complex manifold (ℳ ,� )  
 
Kinetic energy given 						�:�ℳ → ℳ  
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Potential energy �:�ℳ → ℳ  
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The Lagrangian function (energy function) 
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Is vertical derivation (differentiation) �� is defined  
 

���
= ����

,��= ���
� − ��� 

 
ϕ � = ���� such that  

�� =
�

���

��� −
�

���

��� +
�

���

��� −
�

���

��� +
�

���

��� −
�

���

���																																																																																																					(3) 

 
 
     Defined by operator  ��:�(ℳ ) → ⋀�ℳ 	 
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That  
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Calculate   ϕ �(�) 
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From the energy equation we get 
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Equation of Equation (6) with Equation (7) we obtain 
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Be an integral curve .in local coordinates it is obtained that 
 
Suppose that a curve 
 
α:	I	 ⊂ 	R	 → T∗ℳ = ��� 
 
is an integral curve of the Lagrangian vector field X�, i.e., 
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dt
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Taking the equation(8) = the equation (9)  
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Hence the triple (ℳ 	,ϕ �,ξ) is shown to be a Lagrangian mechanical system which are deduced by means of an almost real 

structure J and using of basis �
�

���
:i = 1,2,3,4,5,6	� on the distributions ℳ    

 
Hamiltonian Dynamical Systems 
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Definition 3.1 [Zeki Kasap, 2015]. A Hamiltonian  function for a Hamiltonian  vector field X on ℳ  is a smooth function 
� ∶	ℳ 	 → 	� such that 
	
i��

ω = dH 																																																																																																																																																																																																															(11)		

 
Definition 3. 2[Zeki, 2016]. A Hamiltonian  system is a triple (�; � ; � ), where (� ; � ) is a Symplectic  manifold and � 	 ∈
	�� (�) is a function, called the Hamiltonian function. 
 
Suppose that an almost real structure, a Liouville  form and 1-form on T∗ℳ  are shown by Φ ∗, λ	and ω , respectively. Then we 
have 
 

ω =
1

2
(x�dx� − x�dx� + x�dx� − x�dx� + x�dx� − x�dx�)																																																																																																																			(12)				 

 
and  
 

λ =
1

2
�x��∗(���) + x��∗(���) + x��∗(���) + x��∗(���) + x��∗(���) + x��∗(���) + x��∗(���) + x��∗(���)�																								(13)	 

 
We substitute equation (12) in equation (13) we get 
 

λ = Φ ∗(ω ) =
1

2
[− x�dx� + x�dx� − x�dx� + x�dx� − x�dx� + x�dx�]							 

 
differential of 	λ 
 
ϕ = − dλ = 

= − d
1

2
[− x�dx� + x�dx� − x�dx� + x�dx� − x�dx� + x�dx�] 

 
 It is known that if ϕ  is a closed 2- form on T∗ℳ , then ϕ � is also a  symplectic structure on T∗ℳ . 
 
ϕ = dx� ∧ dx� + dx� ∧ dx� + dx� ∧ dx�																																																																																																																																																								(14) 
 
 If Hamiltonian vector field X� associated with Hamiltonian energy H is given by 
 

X� = X�
∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

 

 
Calculates a value X�	and	ϕ 	 
 

i��
ϕ = ϕ (X�) = (dx� ∧ dx� + dx� ∧ dx� + dx� ∧ dx�) �X�

∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

+ X�
∂

∂x�

� 

 
 
i��

ϕ = − X�dx� + X�dx� − X�dx� + X�dx� − X�dx� + X�dx�																																																																																																											(15) 

 
 
So we find that 
 

X� =
∂

∂x�

			,			X� = −
∂

∂x�

				,X� =
∂

∂x�

		,X� = −
∂

∂x�

				,X� =
∂

∂x�

			,X� = −
∂

∂x�

 

 
Moreover, the differential of Hamiltonian energy is written as follows: 
 

dH = −
∂H

∂x�

∂

∂x�

+
∂H

∂x�

∂

∂x�

−
∂H

∂x�

∂

∂x�

+
∂H

∂x�

∂

∂x�

−
∂H

∂x�

∂

∂x�

+
∂H

∂x�

∂

∂x�

																																																																																														(16)				 

 
Suppose that a curve 
 
α:	I	 ⊂ 	R	 → T∗ℳ = ��� 
 
is an integral curve of the Hamiltonian vector field X�, i.e., 
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X��α(t)� =
dα(t)

dt
,					t	 ∈ 	I.														 

																				 
In the local coordinates, if it is considered to be 
 

α(t) = 	 �x�(t),x�(t),x�(t),x�(t),x�(t),x�(t)�																																						 
 
we obtain 
 
dα(t)

dt
=

dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

																																																																																																(17)			 

 
Taking the equation(15) = the equation (17)   
 

−
∂H

∂x�

∂

∂x�

+
∂H

∂x�

∂

∂x�

−
∂H

∂x�

∂

∂x�

+
∂H

∂x�

∂

∂x�

−
∂H

∂x�

∂

∂x�

+
∂H

∂x�

∂

∂x�

		 =
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

+
dx�

dt

∂

∂x�

 

 
By comparing the two sides of the equation we get the 
 

−
∂H

∂x�

∂

∂x�

=
dx�

dt

∂

∂x�

						 ⟹ 				 −
∂H

∂x�

=
dx�

dt
 

∂H

∂x�

∂

∂x�

=
dx�

dt

∂

∂x�

						 ⟹ 				
∂H

∂x�

=
dx�

dt
 

−
∂H

∂x�

∂

∂x�

=
dx�

dt

∂

∂x�

						 ⟹ 		 − 	
∂H

∂x�

=
dx�

dt
 

∂H

∂x�

∂

∂x�

=
dx�

dt

∂

∂x�

						 ⟹ 			
∂H

∂x�

=
dx�

dt
 

−
∂H

∂x�

∂

∂x�

=
dx�

dt

∂

∂x�

						 ⟹ 	 − 		
∂H

∂x�

=
dx�

dt
 

∂H

∂x�

∂

∂x�

=
dx�

dt

∂

∂x�

						 ⟹ 			
∂H

∂x�

=
dx�

dt
 

 
Thus Hamilton's equations are 
 

−
∂H

∂x�

=
dx�

dt
	,

∂H

∂x�

=
dx�

dt
		, − 	

∂H

∂x�

=
dx�

dt
		 

 
∂H

∂x�

=
dx�	

dt
,					− 		

∂H

∂x�

=
dx�

dt
	,								

∂H

∂x�

=
dx�

dt
																																																																																																																																													(18) 

 
 Hence the triple (ℳ 	,ϕ ,X�) is shown to be a Hamiltonian mechanical system which are deduced by means of an almost real 

structure �∗ and using of basis �
�

���
:i = 1,2,3,4,5,6� on the distributions T∗ℳ    

 
Conclusion 
 
Thus, equations Lagrangian of equations (10). And equations of Hamiltonian equations (18) with Three Almost Complex 
Structures. 
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