
 
                                

  
 

 

    
 

 
                          

 

PARALLELIZATION OF BACKPROPAGATION ALGORITHM AND BENCHMARKING

*,1Ishan Borker, 2Ruchika, 

1Department of Computer Science and Engineering, Veltech Dr.

2Centre for Development in Advanced Computing (C

ARTICLE INFO                                        ABSTRACT
 

 

 

Back propagation Algorithm is a technique to train Artificial Neural Networks to calculate the 
gradient of the
weights to
propagation
networks. Open
used to produce more efficient neural networks. This technique executes the algorithm in parallel. 
This paper summarizes the basic Back
the serial code.
like code profiling, code optimization are being used. Also, the need to perform benchmarking is 
required to check the relative performance of the program on different system architectures.
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INTRODUCTION 
 
Machine learning is the domain in computer science that is 
used to design complex algorithms and models. It gives the 
chance to the computers to learn without programming 
explicitly. Applications for machine learning include 
bioinformatics, classifying DNA sequences, 
game playing, internet fraud detection, marketing
natural language processing, robotlocomotion
handwriting recognition. Artificial Neural Network is the
of algorithm in machine learning. It is a computing system 
made up of a number of simple, highly interconnected 
processing elements, which process information by their 
dynamic state response to external inputs (Khatri
ANN is composed of multiple nodes. The neurons are 
connected by links and they interact with each other. The result 
is then passed to the other neurons. The output at each node is 
called its activation or node value. Each link is associated 
with weight (https://www.tutorialspoint.com/artificial_
intelligence/artificial_intelligence_neural_networks.htm
propagation is a method used with gradient
calculates the gradient of a loss function with respect to all the 
weights in the network. 
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ABSTRACT 

propagation Algorithm is a technique to train Artificial Neural Networks to calculate the 
gradient of the error function with respect to all the weights. This gradient is then used to update the 
weights to reduce the error function (https://mattmazur.com/2015/03/17/a
propagation-example/). Back propagation Algorithm is a supervised learning approach in neural 
networks. Open MP is a model used for parallel programming to improve efficiency 
used to produce more efficient neural networks. This technique executes the algorithm in parallel. 
This paper summarizes the basic Back propagation Algorithm and measures the time of execution of 
the serial code. It is then compared with the time of execution of parallel code. Also various methods 
like code profiling, code optimization are being used. Also, the need to perform benchmarking is 
required to check the relative performance of the program on different system architectures.

is an open access article distributed under the Creative Commons Attribution License, which 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Machine learning is the domain in computer science that is 
used to design complex algorithms and models. It gives the 

without programming 
Applications for machine learning include 

, computer vision, 
marketing, economics, 

robotlocomotion, speech and 
Artificial Neural Network is the type 

e learning. It is a computing system 
of simple, highly interconnected 

processing elements, which process information by their 
Khatri et al., 2015). 

ANN is composed of multiple nodes. The neurons are 
connected by links and they interact with each other. The result 

The output at each node is 
Each link is associated 

tps://www.tutorialspoint.com/artificial_ 
intelligence/artificial_intelligence_neural_networks.htm). Back 

with gradient descent. It 
with respect to all the 
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The gradient is fed to the optimization method which
the weights to minimize the loss function.
requires the desired output for each
calculate the loss function gradient 
2015/03/17/a-step-by-step backpropagation
MP is a technique used to write a
provides the platform independent set of compiler pragmas, 
directives, function calls and environment variables to use the 
parallelism (Yadav et al., 2010
number of threads as required (
We use Open MP for improving the back
algorithm to achieve better efficiency with an 
of threads. Also, the speedup of the program increases with the 
increase in the number of threads. Parallelism can be done in 
BP by node parallelism. Here weight updating takes place by 
evaluating each node in a single layer in parallel 
2003). 
 

MATERIALS AND METHODS
 

Figure 3 represents the proposed architecture of the paper. It 
consists of 5 sections: 
 

1. Input the out brain click data
required for execution of BPA. 
 

2. Serial computation of BP algorithm:
serial manner is being generated and put into execution.
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propagation Algorithm is a technique to train Artificial Neural Networks to calculate the 
error function with respect to all the weights. This gradient is then used to update the 

https://mattmazur.com/2015/03/17/a-step-by-step back 
propagation Algorithm is a supervised learning approach in neural 

MP is a model used for parallel programming to improve efficiency and time. It is 
used to produce more efficient neural networks. This technique executes the algorithm in parallel. 

propagation Algorithm and measures the time of execution of 
e time of execution of parallel code. Also various methods 

like code profiling, code optimization are being used. Also, the need to perform benchmarking is 
required to check the relative performance of the program on different system architectures. 

ribution License, which permits unrestricted use, 

 

The gradient is fed to the optimization method which updates 
the weights to minimize the loss function. Back propagation 

output for each input value in order to 
gradient (https://mattmazur.com/ 

step backpropagation-example/). Open 
MP is a technique used to write amulti-threaded application. It 
provides the platform independent set of compiler pragmas, 
directives, function calls and environment variables to use the 

., 2010). Master thread spawns the 
(Schuessler and Loyola, 2011). 

MP for improving the back propagation 
algorithm to achieve better efficiency with an available number 

the speedup of the program increases with the 
increase in the number of threads. Parallelism can be done in 

arallelism. Here weight updating takes place by 
evaluating each node in a single layer in parallel (Pethick et al., 

MATERIALS AND METHODS 

Figure 3 represents the proposed architecture of the paper. It 

brain click data set: It is the input dataset 
 

2. Serial computation of BP algorithm: Here program code in 
serial manner is being generated and put into execution. 
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3. Output in the form of updating the weights: It gives the 
desired result by updating the weights in the neural network. 
 
4.  Various other techniques like Profiling of the code using flat 
profile and call graph etc, Optimization of the code from o2 to 
o4 levels and Parallelization of the code using Open MP is 
being carried out. 
 
5. Benchmarking: Here the testing of the parallel, as well as 
serial code, is done on different system architectures like Intel 
64-bit i5 processor and Intel Xeon Phi processor with an 
increase in the number of threads. It is done to evaluate the 
performance with respect to CPU time, memory, I/O 
communication. 
 

 
 

Figure 1. Simple ANN 
(athttps://www.tutorialspoint.com/artificial_intelligence/artificial_

intelligence_neural_networks.htm) 
 

 
 

Figure 2. Fork-join model of Open MP 
 

 
 

Figure 3. Architectural Diagram 

Figure 4 represents the workflow of the paper. The stages 
performed are following: Input dataset of different sizes. 
Implement the Serial code of BP algorithm. Evaluate the code 
with respect to CPU time, memory usage, and I/O 
communication. Then perform code profiling using techniques 
like flat profile, call graph. Also, perform code optimization 
from o2 to o4 levels. Finally perform the benchmarking on 
the64-bit i5 processor, Intel Xeon Phi processor. 
 

 
 

Figure 4. Workflow 
 

Implementation 
 
The out brain click dataset has been used as input for the BP 
algorithm. The dataset is taken for different sizes (24MB, 
96MB, 250MB, 500MB, 750MB and 1GB).The attributes of 
the dataset are display_id, clicked, input, input weight, and 
output weight. Apply BP algorithm on this dataset. The result 
can be calculated based on updating the weights. Then we 
calculate the time of execution of serial code, memory usage 
and I/O communication. After this task, we perform profiling 
and optimization of the code. After this we use Open MP for 
parallelizing the code and then calculate the time of execution 
of serial code, memory usage and I/O communication and 
compare it with that to the serial code. Finally benchmarking 
of both the serial and parallel code is done on Intel 64-bit 
processor and Intel Xeon processor. 
 

RESULTS ANALYSIS 
 

Table I. Comparison of serial and parallel code with respect to 
CPU Time (in seconds) (Intel 64-bit processor) 

 

 
 
 

Size of Dataset Serial code 
          Parallel code 

   4 threads   8 threads 
24MB 20.07 19.37 19.36 
96MB 81.54 77.73 76.83 
250MB 219.50 212.09 210.44 
500MB 442.81 404.22 400.3 
750MB 642.76 572.63 567.70 
1GB 887.84 801.43 801.66 
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Table II. Comparison of serial and parallel code with respect to Memory usage (in bytes) (Intel 64-bit processor) 
 

Size of Dataset Serial code 
          Parallel code 

   4 threads   8 threads 
24MB 12191 12122 12232 
96MB 12324 12384 12430 
250MB 7045 6146 6187 
500MB 6985 6224 6279 
750MB 9495 9521 9565 
1GB 9678 9716 9757 

 

III.   Serial Code 
 

Table III and IV. Comparison of serial and parallel code with respect to I/O communication (Intel 64-bit processor) 
 

Size of Dataset 

             Average CPU (%)  

% 
user 

% 
nice 

% 
system 

% 
iowait 

% 
Idle 

24MB 19.59 0.05 11.91 1.23 67.22 
96MB 19.38 0.05 11.75 1.20 67.62 
250MB 19.45 0.08 11.03 1.89 67.55 
500MB 18.32 0.09 10.72 2.06 68.81 
750MB 21.2 0.06 12.09 1.56 65.09 
1GB 19.68 0.05 11.96 1.23 67.08 

 
 

Size of dataset 

Average CPU (%) 

% 
user 

% 
nice 

% 
system 

% 
Iowait 

% 
Idle 

4 threads 8 threads 4 threads 8 threads 4  threads 8 threads 4  threads 8 threads 4  threads 8 threads 
24MB 19.52 19.47 0.05 0.05 11.87 11.86 1.2 1.2 67.34 67.4 
96MB 19.36 19.33 0.05 0.05 11.74 11.72 1.2 1.2 67.66 67.7 
250MB 17.41 17.31 0.11 0.11 10.03 9.96 2.45 2.43 70 70.19 
500MB 18.36 18.44 0.09 0.09 10.77 10.84 2.07 2.08 68.71 68.55 
750MB 17.61 17.8 0.04 0.04 10.74 10.94 1.12 1.09 70.48 70.12 
1GB 19.86 19.92 0.05 0.05 12.08 12.11 1.24 1.24 66.77 66.68 

 
IV. Parallel Code 

 
Table V. Comparison of serial and parallel code with respect to CPU Time (in seconds) (Intel Xeon processor) 

 

Size of Dataset Serial code 
          Parallel code 

   4 threads   8 threads 
24MB 21.93 19.12 18.92 
96MB 86.54 77.28 78.44 
250MB 223.57 215.09 213.37 
500MB 442.4 424.42 428.28 
750MB 633.77 605.47 610.95 
1GB 914.83 851.4 854.12 

 
Table VI. Comparison of serial and parallel code with respect to Memory usage (in bytes) (Intel Xeon processor) 

 

Size of Dataset Serial code 
          Parallel code 

   4 threads   8 threads 
24MB 9329 14986 15073 
96MB 9409 6419 6834 
250MB 9463 7348 7695 
500MB 9519 8170 8751 
750MB 9567 8850 8917 
1GB 9630 8979 9049 

 

VII. Serial Code 
 

Table VII and VIII. Comparison of serial and parallel code with respect to I/O communication (Intel Xeon processor) 
 

Size of dataset  Average CPU (%)  

% user % nice % system % iowait % idle 
24MB 0.91 0 0.76 0.17 98.15 
96MB 0.92 0 0.77 0.17 98.14 
250MB 5.52 0.03 6.5 4.55 83.40 
500MB 5.71 0.01 7.21 1.84 85.22 
750MB 6.09 0.01 7.95 1.08 84.88 
1GB 6.67 0.01 8.2 0.58 84.55 
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VIII. Parallel Code 
 

 
 

Figure 5. Graph representing the comparison of serial and 
parallel code with respect to CPU Time (in seconds) on 1GB 

dataset 
 

 
 

Figure 6. Graph representing the comparison of serial and 
parallel code with respect to Memory usage (in bytes) on 1GB 

dataset 
 

 
 

Figure 7. Graph representing the serial code with respect to I/O 
communication (in average CPU %) on 1GB dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8. Graph representing the parallel code with respect to I/O 

communication (in average CPU %) on 1GB dataset 
 
Conclusion 
 
Various algorithms on machine learning were studied. Most 
efficient was back propagation algorithm. The serial code of 
this algorithm was implemented on different datasets of 
different sizes and executed on Intel 64-bit processor. We 
evaluate the performance with respect to CPU time, memory 
usage, and I/O communication. After this, code profiling and 
code optimization were carried out. Then we execute parallel 
code using OpenMP for all the datasets and evaluate the 
performance with respect to the above-mentioned parameters. 
Then we perform benchmarking of both the codes on Intel 
Xeon processor. It is observed that the time for execution, 
memory consumed and I/O communication in  serial time is 
more than compared to the parallel code. Also, these factors get 
reduced on increasing the number of threads. In addition, Intel 
Xeon allows smooth execution of both the serial as well as 
parallel code as compared to that on Intel 64-bit processor. 
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