ISSN: 0975-833X

CONSTRUCTED AN ALGORITHM FOR FINDING A NON-SPLIT DOMINATING SET OF A CIRCULAR-ARC GRAPH

Dr. A. Sudhakaraiah, V. Rama Latha and E. Gnana Deepika
Department of Mathematics, S. V. University, Tirupati-517502, Andhra Pradesh, India

ARTICLE INFO

Article History:

Received $27^{\text {th }}$ July, 2012
Received in revised form
$30^{\text {th }}$ August, 2012
Accepted $26^{\text {th }}$ September, 2012
Published online $30^{\text {th }}$ October, 2012

Key words:

Circular-arc family, Circular-arc graph, Dominating set, Non-split dominating set, Non-split domination number.

Abstract

In graph theory, a connected component of an undirected graph is a sub graph in which any two vertices are connected to each other by paths. For a graph G, if the sub graph of G itself is a connected component then the graph is called connected, else the graph G is called disconnected and each connected component sub graph is called it's components. Circular-arc graphs have variety of applications involving traffic light sequencing, genetics etc. A dominating set D of graph $G=(V, E)$ is a non-split dominating set if the induced sub graph $<\mathrm{V}-\mathrm{D}>$ is connected. The non-split domination number $\Upsilon_{n s}(G)$ of G is the minimum cardinality of a non-split dominating set .In this paper constructed an algorithm for finding a non-split dominating set of an Circular-Arc graph. Also its relationships with other parameters is investigated.

Copy Right, IJCR, 2012, Academic Journals. All rights reserved.

INTRODUCTION

Consider $A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ a family of arcs on a circle C. Each endpoint of the arc A_{i} is assigned a positive integer called a co-ordinate. The endpoints are located at the circumference of C in ascending order of the values of the coordinates in the clockwise direction. Suppose that an arc begins at c and ends at point d in the clockwise direction. Then we denote such an arc by [c, d] and the points c and d arc called respectively the head point and tail point of the arc. The arcs are given labels in the increasing order of their head points. If the head point of an arc is less than the tail point of the arc then the arc is called a forward arc. Otherwise it is called a backward arc. A is called a proper arc family if no arc in A contains another arc. A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called a circular-arc graph if there is a one - to - one correspondence between V and A such that two vertices in V are adjacent if and only if their corresponding arcs in A intersect. Let us now denote the arc family by $\mathrm{A}=\{1,2, \ldots, \mathrm{n}\}$, where arc $\mathrm{i}=\mathrm{A}_{\mathrm{i}}$ and G is its corresponding Circular-arc graph. We assume that G is a connected graph. Circular-arc graphs have been studied in [1][2]. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. A set $\mathrm{D} \subseteq \mathrm{V}$ is a dominating set [3] of G if every vertex in < V-D > is adjacent to some vertex in D. The domination number $\Upsilon(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is connected dominating set if the induced sub graph $<\mathrm{D}>$ is connected. The connected domination number [4] $\Upsilon_{c}(G)$ of G is the minimum cardinality of a connected dominating set. A dominating set D of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a split dominating set if the induced sub graph $<\mathrm{V}$-D $>$ is disconnected. The split
domination number [5] $\Upsilon_{\mathrm{s}}(\mathrm{G})$ of G is the minimum cardinality of a split dominating set. The purpose of this paper is to introduce the concept of constructed an algorithm for finding a non- split dominating set of circular-arc graph. A dominating set D of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a non-split dominating set, if the induced sub graph $<\mathrm{V}-\mathrm{D}>$ is connected. The nonsplit domination number $\Upsilon_{n s}(G)$ of G is the minimum cardinality of a non-split dominating set. Kulli .V.R et.all [6] introduced the concept of split and non split domination in graphs and also in Maheswari, et al. [7]. The neighbourhood of a vertex $\mathrm{v} \in \mathrm{V}$ is set consisting all vertices adjacent to v (including v). It is denoted by nbd[v]. Let nbd[i] be defined as the set of vertices adjacent to i including i. A subset S of V in G is called a neighbourhood set of G if $G=\bigcup_{v \in S} n b d[v]$, where $\langle\operatorname{nbd}[\mathrm{v}]>$ is the vertex induced subgraph of G. The neighbourhood number of G is defined as the minimum cardinality of a neighbourhood set of G. In addition, if the set S is independent then S is called an independent neighbourhood set of G. Let \max (i) denotes the largest interval in nbd[i]. Gruprakash. C. D.,Mallikarjuna Swamy.B. P [8], Minimum Matching dominating sets and its apllications in wireless networks define $\operatorname{Next}(\mathrm{i})=\mathrm{j}$ if and only if $\mathrm{b}_{\mathrm{i}}<\mathrm{a}_{\mathrm{j}}$ and there does not exist an interval k such that $b_{i}<a_{k}<a_{j}$. If there is no such j, we define $\operatorname{Next}(\mathrm{i})=$ null, this means that we should not have consider in terms of next (i). But we should have been considering in neighbourhood sets.

[^0]
Verification of an algorithm for finding a non-split dominating set

Input: Circular-arc family $A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.
Output: Non-split dominating set and induced sub graph is connected.
Step1: $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}, \mathrm{T}=\{\mathrm{j} / \mathrm{j} \in \mathrm{nbd}[1]$ and forward arc $\}$,
$\mathrm{P}=\{\mathrm{j} / \mathrm{j} \in \mathrm{T}$ and $\mathrm{j} \in \operatorname{nbd}[\mathrm{k}] \forall \mathrm{k}$ in T$\}$
Step2: $S=$ The least largest degree interval in P
Step3: LI = The largest interval in S
Step4: Compute Next (LI). If $\operatorname{Next(LI)~} \in \operatorname{nbd}[\min (S)]$ then go to step 8
Step5: If Max $(\operatorname{Next}(L I)) \in \operatorname{nbd}[\mathrm{r}], \forall \mathrm{r} \in \mathrm{S}$
Step6: $\operatorname{Max}(\operatorname{Next}(\mathrm{LI}))=\{\operatorname{Max}(\operatorname{Next}(\mathrm{LI}))\}-\{1\}$ go to step 5
Else go to next step
Step7: $\mathrm{S}=\mathrm{S} \cup \operatorname{Max}(\operatorname{Next}(\mathrm{LI}))$ go to step 3
Step8: V-S $=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}-\mathrm{r}}\right\}$, where $\Upsilon=|\mathrm{S}|$
Step9: for $\mathrm{i}=1$ to $\mathrm{n}-\mathrm{Y}-1$
\{
for $\mathrm{j}=\mathrm{i}+1$ to $\mathrm{n}-\Upsilon$
\{
If $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \in \mathrm{E}(\mathrm{G})$, then join from s_{i} to s_{j}
\}
\} The induced graph G_{1} is obtained
Step10: If $w\left(G_{1}\right)=1$ (Here $w\left(G_{1}\right)$ indicates number of components)
Therefore the graph G_{1} is connected.
Hence S is non-split dominating set.
Else
S is split dominating set
Step11: End.

Main Theorems

Theorem1: Let $A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a circular-arc family and G is circular-arc graph corresponding to A. If A_{i} and A_{j} are any two arcs in A such that A_{j} is contained in A_{i} and $A_{i} \in D$ and if A_{1} is any arc in A which is to the left of A_{j} in clock wise direction such that $A_{1}<A_{j}$ and A_{1} intersect A_{j} and if there is at least one $A_{k}>A_{j}$ such that A_{k} intersects A_{j} then non-split domination occurs in G.

Proof: Let $A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a circular-arc family and G be circular-arc graph corresponding to A. If A_{i} and A_{j} are any two arcs in A such the A_{j} is contained in A_{i} and $A_{i} \in D$. Suppose there is at least one arc $A_{k} \neq A_{i}, A_{k}>A_{j}$ such that A_{k} intersect A_{j} then it is obvious that in the induced sub graph $<$ $\mathrm{V}-\mathrm{D}>, \mathrm{A}_{\mathrm{k}}$ is adjacent to A_{j}. By hypothesis there is at least one $\quad A_{m}<A_{j}$ in $<V-D>$ such that A_{m} intersects A_{j}. Hence A_{j} is connected to it's left as well as to it's right. So that there will not be disconnection in the induced sub graph $<\mathrm{V}-\mathrm{D}>$.This proves directly. Further find the non-split dominating set apart from an algorithm by using neighbourhood system of a circular-arc graph G corresponding to circular-arc family. The procedure as follows with an illustration.

Illustration

We can draw a circular-arc graph from a circular-arc family .
$\operatorname{nbd}[1]=\{1,2,3,10,11\}$,
$\operatorname{nbd}[2]=\{1,2,3,4\}$,
$\operatorname{nbd}[3]=\{1,2,3,4,5\}$,
$\operatorname{nbd}[4]=\{2,3,4,5,6\}$,
$\operatorname{nbd}[5]=\{3,4,5,6,7\}$,
$\operatorname{nbd}[6]=\{4,5,6,7\}$,
$\operatorname{nbd}[7]=\{5,6,7,8,9\}$,
$\operatorname{nbd}[8]=\{7,8,9,10,11\}$,
nbd[9$]=\{7,8,9,10\}$,
$\operatorname{nbd}[10]=\{1,8,9,10,11\}$,
$\operatorname{nbd}[11]=\{1,8,10,11\}$

Figure 1.Circular-arc family
$\operatorname{Max}(1)=11, \operatorname{Max}(2)=4, \operatorname{Max}(3)=5, \operatorname{Max}(4)=6$, $\operatorname{Max}(5)=7, \operatorname{Max}(6)=7 \operatorname{Max}(7)=9, \operatorname{Max}(8)=11 \operatorname{Max}(9)=10$, $\operatorname{Max}(10)=11, \operatorname{Max}(11)=11$.
$\operatorname{Next}(1)=4, \operatorname{Next}(2)=5, \operatorname{Next}(3)=6, \operatorname{Next}(4)=7, \operatorname{Next}(5)=8$,
$\operatorname{Next}(6)=8, \operatorname{Next}(7)=10, \operatorname{Next}(8)=$ null $\operatorname{Next}(9)=$ null,
$\operatorname{Next}(10)=$ null, $\operatorname{Next}(11)=$ null

Procedure

Input: Circular-arc family $\mathrm{A}=\{1,2,3,4,5,6,7,8,9,10,11\}$
Step1: $V=\{1,2, \ldots, 11\}, T=\{1,2,3\}, P=\{1,2,3\}$
Step2: $\mathrm{S}=1$
Step3: LI = 1
Step4: Next (1) = 4
Step5 : $\operatorname{Max}(4)=6$
Step6: $S=\{1\} \cup\{6\}=\{1,6\}$ go to Step3
Step7: LI = 6
Step8: $\operatorname{Next}(6)=8$
Step9 $=$ Max $(8)=11-1=10-1=9$ go to step3
Step10:S=\{1,6,9\}
Step11:V-S $=\{2,3,4,5,7,8,10,11\}$
Step 12: for $\mathrm{i}=1, \mathrm{j}=2,\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}\right)=(2,3) \in \mathrm{E}(\mathrm{G})$, join from 2 to 3
$j=3,\left(s_{1}, s_{3}\right)=(2,4) \in E(G)$, join from 2 to 4
for $\mathrm{i}=2, \mathrm{j}=3,\left(\mathrm{~s}_{2}, \mathrm{~s}_{3}\right)=(3,4) \in \mathrm{E}(\mathrm{G})$, join from 3 to 4
$j=4,\left(s_{2}, s_{4}\right)=(3,5) \in E(G)$, join from 3 to 5
for $\mathrm{i}=3, \mathrm{j}=4,\left(\mathrm{~s}_{3}, \mathrm{~s}_{4}\right)=(4,5) \in \mathrm{E}(\mathrm{G})$, join from 4 to 5
for $\mathrm{i}=4, \mathrm{j}=5,\left(\mathrm{~s}_{4}, \mathrm{~s}_{5}\right)=(5,7) \in \mathrm{E}(\mathrm{G})$, join from 5 to 7
for $\mathrm{i}=5, \mathrm{j}=6,\left(\mathrm{~s}_{5}, \mathrm{~s}_{6}\right)=(7,8) \in \mathrm{E}(\mathrm{G})$, join from 7 to 8
for $\mathrm{i}=6, \mathrm{j}=7,\left(\mathrm{~s}_{6}, \mathrm{~s}_{7}\right)=(8,10) \in \mathrm{E}(\mathrm{G})$, join from 8 to 10
$j=8,\left(s_{6}, s_{8}\right)=(8,11) \in E(G)$, join from 8 to 11
for $\mathrm{i}=7, \mathrm{j}=8,\left(\mathrm{~s}_{7}, \mathrm{~s}_{8}\right)=(10,11) \in \mathrm{E}(\mathrm{G})$, join from 10 to 11
The induced subgraph G_{1} is obtained
Step13: $w\left(G_{1}\right)=1$
Therefore the graph G_{1} is connected.
Hence $S=\{1,6,9\}$ is a non-split dominating set.
Step 14: End
Output: $S=\{1,6,9\}$ is a non-split dominating set and G_{1} is connected.

Theorem2: Let A be a circular-arc family and G be a circulararc graph corresponding to A. If $A_{j}=2$ is the arc contained in $A_{i}=1$ and $A_{i} \in D$, where D is a dominating set and there is at least one arc that intersects A_{j} it's right other than A_{i} then nonsplit domination occurs in G.

Proof: Let A be circular-arc family and G is a circular-arc graph corresponding to A. If $A_{j}=2$ is the arc contained in $A_{i}=1$ and $A_{i} \in D$, where D is a dominating set. Suppose A_{k} is any $\operatorname{arc} A_{k} \neq A_{i}, A_{k}>A_{j}$ such that A_{k} intersects A_{j}. Then in the induced sub graph $\langle V-D\rangle, A_{j}$ is connected to A_{k}, so that there is no disconnection for A_{j} to it's right in clockwise direction. After that we prove that the above procedure towards as algorithm and we will verify as the following.

Illustration

We can draw a circular-arc graph from a circular-arc family $\operatorname{nbd}[1]=\{1,2,3,4,10\}, \operatorname{nbd}[2]=\{1,2,3\}, \operatorname{nbd}[3]=\{1,2,3,4\}$, $\operatorname{nbd}[4]=\{1,3,4,5\}, \operatorname{nbd}[5]=\{4,5,6,7\} \operatorname{nbd}[6]=\{5,6,7,8\}$, $\operatorname{nbd}[7]=\{5,6,7,8,9\}, \operatorname{nbd}[8]=\{6,7,8,9,10\}$,
nbd[9] $=\{7,8,9,10\}$, nbd $[10]=\{1,8,9,10\}$
$\operatorname{Max}(1)=10, \operatorname{Max}(2)=3, \operatorname{Max}(3)=4, \operatorname{Max}(4)=5, \operatorname{Max}(5)=7, \operatorname{Max}(6)=$
$8, \operatorname{Max}(7)=9, \operatorname{Max}(8)=10, \operatorname{Max}(9)=10, \operatorname{Max}(10)=10 \operatorname{Next}(1)=5$,
$\operatorname{Next}(2)=4, \operatorname{Next}(3)=5, \operatorname{Next}(4)=6, \operatorname{Next}(5)=8$,
$\operatorname{Next}(6)=9, \operatorname{Next}(7)=10, \operatorname{Next}(8)=$ null,Next(9)=null,
$\operatorname{Next}(10)=$ null

Figure 2. Circular-arc family

Procedure

Input: Circular-arc family $\mathrm{A}=\{1,2,3,4,5,6,7,8,9,10\}$
Step1: $\mathrm{V}=\{1,2, \ldots, 10\}, \mathrm{T}=\{1,2,3,4\}, \mathrm{P}=\{1,3\}$
Step2: $\mathrm{S}=1$
Step3: $\mathrm{LI}=1$
Step4: Next (1) = 5
Step5: $\operatorname{Max}(5)=7$
Step6: $S=1 \cup 7=\{1,7\}$ go to Step3
Step7: LI = 7
Step8: $\operatorname{Next}(7)=10$
Step9 $=\operatorname{Max}(10)=10-1=9-1=8-1=7$
Step10:S=\{1,7\}
Step11:V-S $=\{2,3,4,5,6,8,9,10\}$
Step12: for $\mathrm{i}=1, \mathrm{j}=2,\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}\right)=(2,3) \in \mathrm{E}(\mathrm{G})$, join from 2 to 3
for $\mathrm{i}=2, \mathrm{j}=3,\left(\mathrm{~s}_{2}, \mathrm{~s}_{3}\right)=(3,4) \in \mathrm{E}(\mathrm{G})$, join from 3 to 4
for $\mathrm{i}=3, \mathrm{j}=4,\left(\mathrm{~s}_{3}, \mathrm{~s}_{4}\right)=(4,5) \in \mathrm{E}(\mathrm{G})$, join from 4 to 5
for $\mathrm{i}=4, \mathrm{j}=5,\left(\mathrm{~s}_{4}, \mathrm{~s}_{5}\right)=(5,6) \in \mathrm{E}(\mathrm{G})$, join from 5 to 6
for $\mathrm{i}=5, \mathrm{j}=6,\left(\mathrm{~s}_{5}, \mathrm{~s}_{6}\right)=(6,8) \in \mathrm{E}(\mathrm{G})$, join from 6 to 8
for $\mathrm{i}=6, \mathrm{j}=7,\left(\mathrm{~s}_{6}, \mathrm{~s}_{7}\right)=(8,9) \in \mathrm{E}(\mathrm{G})$, join from 8 to 9
$\mathrm{j}=8,\left(\mathrm{~s}_{6}, \mathrm{~s}_{8}\right)=(8,10) \in \mathrm{E}(\mathrm{G})$, join from 8 to 10
for $\mathrm{i}=7, \mathrm{j}=8,\left(\mathrm{~s}_{7}, \mathrm{~s}_{8}\right)=(9,10) \in \mathrm{E}(\mathrm{G})$, join from 9 to 10
The induced subgraph G_{1} is obtained
Step13: $w\left(G_{1}\right)=1$
Therefore the graph G_{1} is connected.
Hence $S=\{1,7\}$ is a non-split dominating set.
Step14:End
Output: $S=\{1,7\}$ is a non-split dominating set and G_{1} is connected.

Theorem3: Let A be circular-arc family and G be a circulararc graph corresponding to A. If A_{i}, A_{j}, A_{k} are three consecutive forward arcs in A where A is a proper arc family such that $A_{i}<A_{j}<A_{k}, A_{j} \neq 1$ and A_{i} and A_{j} intersect, A_{j} and A_{k} intersect but A_{i} and A_{k} do not intersect and $A_{j} \in D$ and there is atleast one backward arc in $<\mathrm{V}$-D $>$ then non-split domination occurs in G.

Proof: Let A be circular-arc family and G be a circular-arc graph corresponding to A. If A_{i}, A_{j}, A_{k} are three consecutive forward arcs in A where A is a proper arc family such that A_{i} $<\mathrm{A}_{\mathrm{j}}<\mathrm{A}_{\mathrm{k}}, \mathrm{A}_{\mathrm{j}} \neq 1$ and A_{i} and A_{j} intersect, A_{j} and A_{k} intersect but A_{i} and A_{k} do not intersect and $A_{j} \in D$ and there is atleast one backward arc in $\langle V-D\rangle$. Since $A_{j} \in D, A_{i}$ and A_{k} are disconnected in clockwise direction in $\langle\mathrm{V}-\mathrm{D}\rangle$. However if there is a backward arc in $<\mathrm{V}-\mathrm{D}>$ then there is a path between A_{k} and A_{i} in clockwise direction namely $\left(A_{k}, A_{i}\right)$ path, so that A_{i} and A_{k} are connected in $\langle V-D\rangle$. Hence there is no disconnection in $\langle\mathrm{V}-\mathrm{D}\rangle$. The above procedure can verify using a method of algorithms.

Illustration

We can draw a circular-arc graph from a circular-arc family $\operatorname{nbd}[1]=\{1,2,3,10\}, \operatorname{nbd}[2]=\{1,2,3,10\}$, $\operatorname{nbd}[3]=\{1,2,3,4\}, \operatorname{nbd}[4]=\{3,4,5,6\}, \operatorname{nbd}[5]=\{4,5,6,7\}$, $\operatorname{nbd}[6]=\{4,5,6,7,8\}, \operatorname{nbd}[7]=\{5,6,7,8,9\}, \operatorname{nbd}[8]=\{6,7,8,9,10\}$, nbd $[9]=\{7,8,9,10\} \operatorname{nbd}[10]=\{1,2,8,9,10\}$
$\operatorname{Max}(1)=10, \operatorname{Max}(2)=10, \operatorname{Max}(3)=4, \operatorname{Max}(4)=6, \operatorname{Max}(5)=7$, $\operatorname{Max}(6)=8, \operatorname{Max}(7)=9, \operatorname{Max}(8)=10, \operatorname{Max}(9)=10 \operatorname{Max}(10)=10$
$\operatorname{Next}(2)=4, \operatorname{Next}(3)=5, \operatorname{Next}(4)=7, \operatorname{Next}(5)=8, \operatorname{Next}(1)=4$,
$\operatorname{Next}(6)=9, \operatorname{Next}(7)=10, \operatorname{Next}(8)=$ null, $\operatorname{Next}(9)=$ null,
$\operatorname{Next}(10)=$ null

Figure 3. Circular-arc family

Procedure

Input: Circular-arc family $\mathrm{A}=\{1,2,3,4,5,6,7,8,9,10\}$
Step1: $\mathrm{V}=\{1,2, \ldots, 10\}, \mathrm{T}=\{1,2,3\}, \mathrm{P}=\{1,2,3\}$
Step2: S = 1
Step3: $\mathrm{LI}=1$
Step4: $\operatorname{Next}(1)=4$

Step5: $\operatorname{Max}(4)=6$
Step6: $S=\{1\} \cup\{6\}=\{1,6\}$ go to Step3
Step7: LI = 6
Step8: Next (6)=9
Step9: Max (9)=10-1=9
Step10:S $=\{1,6,9\}$ go to step 3
Step11:V-S = \{2,3,4,5,7,8,10\}
Step12: for $i=1, j=2,\left(s_{1}, s_{2}\right)=(2,3) \in E(G)$, join from 2 to 3 $\mathrm{j}=7,\left(\mathrm{~s}_{1}, \mathrm{~s}_{7}\right)=(2,10) \in \mathrm{E}(\mathrm{G})$, join from 2 to 10
for $\mathrm{i}=2, \mathrm{j}=3,\left(\mathrm{~s}_{2}, \mathrm{~s}_{3}\right)=(3,4) \in \mathrm{E}(\mathrm{G})$, join from 3 to 4
for $\mathrm{i}=3, \mathrm{j}=4,\left(\mathrm{~s}_{3}, \mathrm{~s}_{4}\right)=(4,5) \in \mathrm{E}(\mathrm{G})$, join from 4 to 5
for $\mathrm{i}=4, \mathrm{j}=5,\left(\mathrm{~s}_{4}, \mathrm{~s}_{5}\right)=(5,7) \in \mathrm{E}(\mathrm{G})$, join from 5 to 7
for $\mathrm{i}=5, \mathrm{j}=6,\left(\mathrm{~s}_{5}, \mathrm{~s}_{6}\right)=(7,8) \in \mathrm{E}(\mathrm{G})$, join from 7 to 8
for $\mathrm{i}=6, \mathrm{j}=7,\left(\mathrm{~s}_{6}, \mathrm{~s}_{7}\right)=(8,10) \in \mathrm{E}(\mathrm{G})$, join from 8 to 10
$\mathrm{j}=8,\left(\mathrm{~s}_{6}, \mathrm{~s}_{8}\right)=(8,10) \in \mathrm{E}(\mathrm{G})$, join from 8 to 10
for $\mathrm{i}=7, \mathrm{j}=8,\left(\mathrm{~s}_{7}, \mathrm{~s}_{8}\right)=(9,10) \in \mathrm{E}(\mathrm{G})$, join from 9 to 10
The induced subgraph G_{1} is obtained
Step13: $w\left(G_{1}\right)=1$
Therefore the graph G_{1} is connected.
Hence $S=\{1,6,9\}$ is a non-split dominating set.
Step14: End
Output: $\mathrm{S}=\{1,6,9\}$ is a non-split dominating set and G_{1} is connected

REFERENCES

Chang, M. S. 1998. "Efficient algorithms for the domination problems on interval and circular-arc graphs", SIAM J.Comput., 27: 1671-1694.

Cockayne, E. J. and S. T. Hedetniemi, 1997. "Towards a theory of domination in graphs". Networks 7:247
Golumbic, M.C. 1980. "Algorithmic graph theory and perfect graphs", Academic press,New York.
Gruprakash. C. D.,Mallikarjuna Swamy.B. P. Minimum Matching Dominating Sets and its Apllications in Wireless Netwporks. Vol. No.30, 23-27, 2011.
Kulli, V. R. and B. Janakiram, "1997. The split domination number of a graph". Graph theory Notes of New York, New York Academy of Sciences (1997) XXXII, 16-19.
Kulli, V. R. and B. Janakiram, 2000. "The non-split domination number of a graph". Indian J. pure appl. Math,31(5):545-550.
Maheswari, B., Nagamuni Reddy, L., and Sudhakaraiah, A.,2003,"Split and non-split dominating set of circular-arc graphs", J. curr. Sci 3(2),369-372.
Moscarini, M. 1993. "Doubly chordal graphs, Steiner trees and connected domination", Networks 23: 59-69.

[^0]: *Corresponding author: sudhamath.svu@gmail.com

