

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 02, pp.47254-47263, February, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SPATIO-TEMPORAL FOR GROUNDWATER QUALITY ZONES IN THE ARASALARU SUB BASIN, CAUVERY BASIN, TAMIL NADU

*Thamilarasan, T. and Sankar, K.

Department of Industries and Earth Sciences, Tamil University, Thanjavur, Tamil Nadu, India

ARTICLE INFO	ABSTRACT			
<i>Article History:</i> Received 24 th November, 2016 Received in revised form 25 th December, 2016 Accepted 05 th January, 2017 Published online 28 th February, 2017	In the present study, the chemical characteristics of groundwater with respect to drinking and irrigation water quality in Arasalaru Sub-Basin have been studied. 50 groundwater sample were collected and analyzed for pH, Total Dissolved solids, Total Hardness, Calcium, Magnesium, Carbonate, Bicarbonate, Chloride, Sodium, Potassium, Sulphate etc. The values analyzed were evaluated in detail and compared with WHO water quality standards. It is observed that, for most of the groundwater quality parameters, the values are not potable for drinking and irrigational use. To			
Key words:	- understand the spatial distribution of unsuitable zones, ArcGIS was employed. Attributes were linked and spatial interpolation mapping was done. Inverse distance weighted interpolation technique was			
SAR, Sodium Percentage, Electrical Conductivity, Magnesium Ratio, Arasalaru River.	tollowed for raster and vector mapping. Finally the overlay analyses were also carried out to locate the worst quality zone.			

Copyright©2017, Thamilarasan and Sankar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Thamilarasan, T. and Sankar, K. 2017. "Spatio-temporal for groundwater quality zones in the Arasalaru sub basin, Cauvery basin, Tamil Nadu", International Journal of Current Research, 9, (02), 47254-47263.

INTRODUCTION

Groundwater is used for domestic supply, industries and agriculture in most parts of the world as it is a replenishable resource and has inherent advantages over surface water. Several parts of the Dharwad district are facing an acute shortage of drinking water owing to poor quality of groundwater. Hedge and Puranik (1992, 1996), Hedge et al. (1992, 1999), Munuswamy et al. (1993), Abbi and Puranik (2000) and Hedge (2003) have discussed the quality of groundwater in certain part of Dharwad district. The Central Groundwater Board (CGWB, 2000) has provided a general account of the hydrogeological aspects of the district. Elsewhere, Munn (1936a), Subhash Chandra and Ganachari (1981) have studied chemical quality of groundwater of extensive black soil zones of Bellary and Raichur districts. Water quality is determined by the solute and gases dissolved in the water. The recent studies (SAC, 1986; NRSA, 1995; Sahai, 1993; Sahai et al., 1993, Srivastava et al., 1999) have focused on the utility of high resolution satellite imageries to identify and outline the surface features more accurately. In the present study, groundwater samples have been collected and analyzed for various parameters such as EC, pH, TDS, Ca, Mg, HCO3, Cl, Na and K etc., the analyzed results were taken in to GIS environment. The suitability of groundwater for drinking,

Department of Industries and Earth Sciences, Tamil University, Thanjavur, Tamil Nadu, India.

irrigation and industrial purposes depends upon its quality. Changes in groundwater quality may be caused by variations in climate conditions, residence time of water, aquifer materials, and inputs from soil during recharge (Mitra *et al.*, 2007; Giridharan *et al.*, 2008; Krishna *et al.*, 2009). The uncontrolled applications of fertilizers and manure is often one of the main sources of groundwater pollution, especially in developing countries. Many natural hydrogeochemical processes are also involved in the control of the chemical composition of groundwater, including the dissolution of carbonate, the weathering of silicates minerals and ion exchange reactions (Giridharan *et al.*, 2008; Krishna *et al.*, 2009; Jalali 2007; Rao 2008)

Geology

Geologically, Arasalaru Sub Basin falls under the Ariyalur groups of cretaceous comprised of limestone, kankar, clay, sand, gravels and some of the isolated pockets Cuddalore sandstones are found. Most of the study area open well and tube wells are found. In the western part of the study area groundwater conditions unconfined nature whereas eastern parts semi confined conditions prevailed. Water table are found to be in the open well areas 40-80 feet whereas tube well areas 350-500 feet and the average annual rainfall about 700-800 mm. Most of the Land use/Land Cover are crown are sugarcane, paddy and cotton and rest of the land existing saline/salty nature and it could be seen as a uncultivated lands.

^{*}Corresponding author: Thamilarasan, T.

Hydrogeochemistry

The groundwater development in Arasalaru River is substantial. Some of the dug and bore wells tapping the phreatic aquifers show salinity. A continuous decline in groundwater level has been observed in many parts of India (Shah 2010; Jin and Feng 2013; World Bank (2011).

Calcium (Ca)

In the study area, total concentration of Calcium ranges from 22 to 92 ppm in the groundwater samples within the average value 57. The samples are 90% of falls within the permissible limit and 10% of the sample falls more than the permissible limit. Maximum concentration values are found in the areas of Vanniyadi, Sargunashwarapuram, Kovilpathu, Pillaithiruvaasal and Kilinjumedu and minimum exists in the areas of Darasuram, Ariyapuram, Chettimandapam, Kuthanur and Injigudi. Total Concentration of Magnesium ranges from 36 to 140 ppm in the groundwater samples in Arasalaru river. The sample falls more than the permissible limit.

Chloride (Cl)

In the study area, total concentration of Chloride ranges from 53 to 245 ppm in the groundwater samples in Arasalaru river. The sample falls more than the permissible limit. In situ measurements of Electrical Conductivity (EC) of water samples from different locations in the Arasalaru River could indirectly indicate the level of mineralization in the phreatic zone. Based on these observations water samples 50 representive water samples were collected and analysed for the Regional Laboratory of Central Groundwater Board, Tamil Nadu (Aris et al, 2007). All the major ions in 95% of the samples are well within the standards specified for drinking and other purpose (BIS, 1991). The electrical conductivity of water is an index of mineralization (Hem, 1991). In the study area, total concentration of Electrical Conductivity ranges from 410 to 1970 ppm in the groundwater samples in Arasalaru river. The sample falls more than the permissible limit.

Bicarbonate (HCO₃)

In the study area, total concentration of Bicarbonate ranges from 24 to 320 ppm in the groundwater samples in Arasalaru river. The samples are 12% of falls within the permissible limit and 88% of the sample falls more than the permissible limit. Maximum concentration values are found in the areas of Nachiar Kovil, Manandakudi, Vichchiyur, Viluthiyur, Tudapanamulai and Kizhkudi and minimum exists in the areas of Sarukkai, Cholanmaligai, Ariyapuram, Vanniyadi, Thirunallar and Puthudurai. According to Freeze and Cherry (1979), under a nitrification process in the presence of oxygen, ammonium is transformed into nitrate. In the study area, total concentration of Nitrate ranges from 22 to 50 ppm in the groundwater samples in Arasalaru river basin.

The samples are 8% of falls within the permissible limit and 92% of the sample falls more than the permissible limit. Maximum concentration values are found in the areas of Vanniyadi, Muthupillai Mandapam, Thukkachi and Thiruvizhimizhalai and minimum exists in the areas of Muthutheruvu, Cholanmaligai, Darasuram, Kidamangalam, Sellur, Serumavilangai and Mel Kasakudi.

pН

In the study area, total concentration of pH ranges from 6 to 8 ppm in the groundwater samples in Arasalaru river. Maximum concentration values are found in the areas of Nachiar Kovil, Manandakudi, Vichchiyur, Viluthiyur, Tudapanamulai and Kizhkudi and minimum exists in the areas of Sarukkai, Cholanmaligai, Ariyapuram, Vanniyadi, Thirunallar and Puthudurai. pH is most important in determining the corrosive nature of water. Lower the pH value higher is the corrosive nature of water. pH was positively correlated with electrical conductance and total alkalinity (Guptaa 2009). The reduced rate of photosynthetic activity the assimilation of carbon dioxide and bicarbonates which are ultimately responsible for increase in pH, the low oxygen values coincided with high temperature during the summer month.

Sulphate (SO₄)

In the study area, total concentration of Sulphate ranges from 22 to 158 ppm in the groundwater samples in Arasalaru river. Maximum concentration values are found in the areas of Nachiar Kovil, Manandakudi, Vichchiyur, Viluthiyur, Tudapanamulai and Kizhkudi and minimum exists in the areas of Sarukkai, Cholanmaligai, Ariyapuram, Vanniyadi, Thirunallar and Puthudurai.

Total Dissolved Solids

Groundwater can be divided based on the distribution of total dissolved solids following Wilcox (Op. cit) and WHO (1993), such as up to 18 ppm (permissible for domestic use), 81-2400 ppm (useful for irrigation) and > 2400 ppm (unsuitable for domestic, industrial and irrigation purposes and listed in table). In the study area, total dissolved solids concentration ranges from 81.90 to 2576.70 ppm in the groundwater samples. The samples are 100 percentage of the sample within the permissible limit for domestic use. Shows the Total Dissolved Solids in the Arasalaru Sub- Basin and it could be seen from this figure the maximum concentration are exits in the area of North-Western parts of the study area whereas maximum concentration are seen the area of northwestern parts of the study area.

Quality of water for irrigation

Assessment of the suitability of groundwater for irrigation purpose requires consideration of the total dissolved solids, concentration of any other substance that may be toxic to plants and relative amount of certain constituents. The important characteristics or properties of groundwater to be considered for irrigational use are Electric Conductivity (EC), salinity, Percentage Sodium (% NA), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC). EC and Na concentration primarily determine the quality of irrigational water. High EC values were reported from various part of the study area especially from coastal side. An elevated salt content in irrigation water leads to the formation of saline soil. This affects salt intake capacity of plants through their roots. With respect to EC values, Richard (1954) classified irrigation water in to four groups. Ten samples during post monsoon and seven samples during pre monsoon fall in fair category. High salinity water cannot be used on soil where there is restricted drainage. Excess salinity diminish the osmotic activity of plants, capacity of absorption of water and nutrients from the soil (Saleh et al., 1999).

1 Sarukkai 450 8 38 66 39 24 128 110 2 Vanniyadi 760 7 76 85 71 194 140 158 3 Mudutheruvu 610 7 24 79 51 187 53 112 4 Vellai Pillaiyam Pettai 470 7 42 73 72 104 75 66 5 Swamimalai 680 6 43 43 63 143 57 77 6 Cholanmaligai 560 7 38 62 40 153 63 115 7 Dharasuram 420 7 22 55 38 183 57 99 8 Ariyapuram 940 7 25 50 97 148 138 112 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Witwarandhur 850 7 38 66 51	39 50 36 42 43 38 22 25 40 38	81.90 1549.80 384.30 151.20 182.70 289.80 264.60 592.20
2 Vanniyadi 760 7 76 85 71 194 140 158 3 Mudutheruvu 610 7 24 79 51 187 53 112 4 Vellai Pillaiyam Pettai 470 7 42 73 72 104 75 66 5 Swamimalai 680 6 43 43 63 143 57 77 6 Cholanmaligai 560 7 38 62 40 153 63 115 7 Dharasuram 420 7 22 55 38 183 57 99 8 Ariyapuram 940 7 25 50 97 148 138 112 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Witwarandhur 850 7 38 66 51 178 85 112	50 36 42 43 38 22 25 40 38	1549.80 384.30 151.20 182.70 289.80 264.60 592.20
3 Mudutheruvu 610 7 24 79 51 187 53 112 4 Vellai Pillaiyam Pettai 470 7 42 73 72 104 75 66 5 Swamimalai 680 6 43 43 63 143 57 77 6 Cholanmaligai 560 7 38 62 40 153 63 115 7 Dharasuram 420 7 22 55 38 183 57 99 8 Ariyapuram 940 7 25 50 97 148 138 112 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Witwarandhur 850 7 38 66 51 178 85 112	36 42 43 38 22 25 40 38	384.30 151.20 182.70 289.80 264.60 592.20
4 Vellai Pillaiyam Pettai 470 7 42 73 72 104 75 66 5 Swamimalai 680 6 43 43 63 143 57 77 6 Cholanmaligai 560 7 38 62 40 153 63 115 7 Dharasuram 420 7 22 55 38 183 57 99 8 Ariyapuram 940 7 25 50 97 148 138 112 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Wikwawandhur 850 7 38 66 51 178 85 112	42 43 38 22 25 40 38	151.20 182.70 289.80 264.60 592.20
5 Swamimalai 680 6 43 43 63 143 57 77 6 Cholanmaligai 560 7 38 62 40 153 63 115 7 Dharasuram 420 7 22 55 38 183 57 99 8 Ariyapuram 940 7 25 50 97 148 138 112 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Vibrorapallur 850 7 28 46 51 178 85 112	43 38 22 25 40 38	182.70 289.80 264.60 592.20
6 Cholanmaligai 560 7 38 62 40 153 63 115 7 Dharasuram 420 7 22 55 38 183 57 99 8 Ariyapuram 940 7 25 50 97 148 138 112 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Vilvarandhur 850 7 28 46 51 178 85 112	38 22 25 40 38	289.80 264.60 592.20
7 Dharasuram 420 7 22 55 38 183 57 99 8 Ariyapuram 940 7 25 50 97 148 138 112 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Vilvarandlur 850 7 28 46 51 178 85 112	22 25 40 38	264.60 592.20
8 Ariyapuram 940 7 25 50 97 148 138 112 9 9 Ariyatidal 700 7 40 44 53 136 57 79 10 Vilvarandlur 850 7 28 66 51 178 95 112	25 40 38	592.20
9 Ariyatidal 700 7 40 44 53 136 57 79	40 38	4.4.1
10 Vilvorovenellur 950 7 29 66 51 179 95 112	38	441
10 viivalayallallul 0.30 / 38 00 31 1/8 83 112		535.50
11 Muthupillai Mandapam 1000 7 45 64 97 188 110 78	45	680.40
12 Chettimandapam 1500 7 38 39 80 106 113 53	38	957.60
13 Kuthanur 890 7 28 40 120 148 103 77	36	560.70
14 Villiyavarambal 840 7 60 65 170 188 219 77	31	1159.2
15 Alagaputhur 1010 7 35 44 110 166 117 65	50	636.30
16 Nachiar Kovil 610 8 45 36 90 205 83 77	42	384.30
17 Tandanthottam 1000 8 44 45 140 176 160 75	40	630
18 Thukkachi 1800 7 59 70 210 180 176 101	47	1455.30
19 Pudukudi 1700 8 69 116 184 127 117 115	33	1260
20 Keerangudi 1720 7 30 55 78 144 135 88	34	453.60
21 Sarguneshwarapuram 800 7 79 140 118 181 210 86	38	2576.70
22 Maruthuvakudi 410 7 42 75 74 153 153 70	40	258.30
23 Thiruvizhimizhalai 750 7 44 60 93 129 128 55	46	157.50
24 Vadugakudi 960 7 55 70 76 131 135 44	38	107.10
25 Manandakudi 790 7 34 82 97 244 149 66	44	497.70
26 Kovilpathu 1110 7 84 73 160 189 145 43	35	1877.40
27 Poonthottam 1700 8 60 92 182 170 180 62	40	1701
28 Injikudi 990 7 39 52 97 197 124 66	45	623.70
29 Andakudi 1180 8 42 66 162 127 170 110	33	743.40
30 Kizhkudi 1200 8 56 51 114 320 210 31	40	756
31 Rettaikudi 1530 8 64 39 117 160 186 43	44	963.90
32 Ambal 1110 7 44 78 120 121 184 29	37	919.80
33 Parakudi 1600 7 48 90 222 184 138 158	35	1638
34 Vichchiyur 900 8 42 85 106 210 174 91	30	1915.20
35 Kidamangalam 1680 7 68 79 149 145 144 34	27	1058.40
36 Naliazhandu 1480 7 32 85 133 198 132 53	32	1562.40
37 Mattur 1670 8 40 76 145 188 152 82	33	1052.10
38 Kokapadi 1810 8 70 92 141 150 222 77	37	2400.30
39 Alayankudi 1970 7 30 64 192 158 245 111	37	1146.60
40 Sellur 1470 7 40 94 129 166 198 76	28	923.10
41 Serumavilangai 1840 7 65 89 155 139 190 99	31	1159.20
42 Mel Kasakudi 700 7 44 53 95 114 153 110	33	315
43 Pillaithiruvasal 1320 8 80 79 162 198 147 22	44	1461.60
44 Thirunallar 840 8 46 62 73 127 153 66	41	529.20
45 Puduthurai 880 7 39 79 92 120 106 99	40	415.80
46 Karaikal 820 7 45 64 98 181 135 55	34	516.60
47 Kilinjumedu 1670 7 92 112 128 190 123 62	31	1682.10
48 Viludiyur 930 7 47 75 75 205 110 73	36	522.90
49 Tudapanamulai 1200 8 50 42 131 206 184 67	37	718.20
50 Uliyapattu 1700 8 55 73 188 180 169 53	30	1291.4

Table 1. Geochemical Characteristics of Arasalaru Sub Basin, Cauvery Basin, Tamil Nadu (in ppm)

Table 2. Geochemical Characteristics of Arasalaru Sub Basin, Cauvery Basin, Tamil Nadu (in epm)

S.No.	Location	EC	Ca	Mg	Na+K	HCO ₃	Cl	SO_4	NO ₃	TDS
1	Sarukkai	450.00	1.89	5.42	1.69	0.39	3.60	2.29	0.62	288.00
2	Vanniyadi	760.00	3.79	6.99	3.82	3.17	3.94	3.28	0.80	486.40
3	Mudutheruvu	610.00	1.19	6.49	2.28	3.06	1.49	2.33	0.58	390.40
4	Vellai Pillaiyam Pettai	470.00	2.09	6.00	3.13	1.70	2.11	1.37	0.67	300.80
5	Swamimalai	680.00	2.39	3.53	2.75	2.34	1.60	1.60	0.69	435.20
6	Cholanmaligai	560.00	1.59	5.09	1.78	2.50	1.77	2.39	0.61	358.40
7	Dharasuram	420.00	1.49	4.52	1.65	2.99	1.60	2.06	0.35	268.80
8	Ariyapuram	940.00	2.09	4.11	4.28	2.42	3.89	2.33	0.40	601.60
9	Ariyatidal	700.00	1.99	3.61	2.37	2.22	1.60	1.64	0.64	448.00
10	Vilvarayanallur	850.00	1.64	5.42	2.23	2.91	2.39	2.33	0.61	544.00
11	Muthupillai Mandapam	1000.00	1.49	5.26	4.23	3.08	3.10	1.62	0.72	640.00
12	Chettimandapam	1500.00	1.89	3.20	3.49	1.73	3.18	1.10	0.61	960.00
13	Kuthanur	890.00	1.39	3.28	5.23	2.42	2.90	1.60	0.58	569.60
14	Villiyavarambal	840.00	2.99	5.34	7.49	3.08	6.17	1.60	0.49	537.60
15	Alagaputhur	1010.00	1.74	3.61	4.88	2.72	3.29	1.35	0.80	646.40
16	Nachiar Kovil	610.00	2.24	2.96	3.91	3.35	2.34	1.60	0.67	390.40
17	Tandanthottam	1000.00	2.19	3.70	6.08	2.88	4.51	1.56	0.64	640.00
18	Thukkachi	1800.00	2.94	5.75	9.89	12.78	4.96	2.10	0.75	1152.00
19	Pudukudi	1700.00	3.44	9.53	8.1	2.08	3.29	2.39	0.53	1088.00
20	Keerangudi	1720.00	1.49	4.52	3.49	2.35	3.80	1.83	0.54	1100.80

Continue.....

21	Sarguneshwarapuram	800.00	3.94	4.52	5.28	2.96	5.92	1.79	0.61	512.00
22	Maruthuvakudi	410.00	2.09	11.51	3.26	2.50	4.31	1.45	0.64	262.4
23	Thiruvizhimizhalai	750.00	2.19	4.93	4.06	2.11	3.60	1.14	0.74	480.00
24	Vadugakudi	960.00	2.74	5.75	3.3	2.14	3.80	0.91	0.61	614.40
25	Manandakudi	790.00	1.69	6.74	4.95	3.99	4.20	1.37	0.70	505.60
26	Kovilpathu	1110.00	4.19	6.00	7	3.09	4.08	0.89	0.56	710.40
27	Poonthottam	1700.00	2.99	7.56	8.03	2.78	5.07	1.29	0.64	1088.00
28	Injikudi	990.00	1.94	4.27	4.23	3.22	3.49	1.37	0.72	633.60
29	Andakudi	1180.00	2.09	5.42	7.06	2.08	4.79	0.20	0.53	755.20
30	Kizhkudi	1200.00	2.79	4.19	5.74	5.24	5.92	0.64	0.64	768.00
31	Rettaikudi	1530.00	3.19	3.20	5.43	2.62	5.24	0.89	0.70	979.20
32	Ambal	1110.00	2.19	6.41	5.61	1.98	5.18	0.60	0.59	710.40
33	Parakudi	1600.00	2.39	7.40	9.75	3.01	3.89	3.28	0.56	1024.00
34	Vichchiyur	900.00	2.09	6.99	4.6	3.44	4.90	1.89	0.48	576.00
35	Kidamangalam	1680.00	3.39	6.49	6.47	2.37	4.06	0.70	0.43	1075.20
36	Naliazhandu	1480.00	1.59	6.99	5.8	3.24	3.72	1.10	0.51	947.20
37	Mattur	1670.00	1.99	6.25	6.3	3.08	4.28	1.70	0.53	1068.80
38	Kokapadi	1810.00	3.49	7.56	6.18	2.45	6.26	1.60	0.59	1158.40
39	Alayankudi	1970.00	1.49	5.26	8.34	2.58	6.90	2.31	0.59	1260.80
40	Sellur	1470.00	1.99	7.73	5.6	2.72	5.58	1.58	0.45	940.80
41	Serumavilangai	1840.00	3.24	7.31	6.78	2.27	5.35	2.06	0.49	1177.60
42	Mel Kasakudi	710.00	2.19	4.35	4.13	1.86	4.31	2.29	0.53	454.40
43	Pillaithiruvasal	1320.00	3.99	6.49	7.04	3.24	4.14	0.45	0.70	844.80
44	Thirunallar	840.00	2.29	5.09	3.19	2.08	4.31	1.37	0.66	537.60
45	Puduthurai	880.00	1.94	6.49	4.02	1.96	2.98	2.06	0.64	563.20
46	Karaikal	820.00	2.24	5.26	4.36	2.96	3.80	1.14	0.54	524.80
47	Kilinjumedu	1670.00	4.59	9.21	5.61	3.11	3.46	1.29	0.49	1068.80
48	Viludiyur	930.00	2.34	6.16	3.31	3.35	3.10	1.51	0.58	595.20
49	Tudapanamulai	1200.00	2.49	3.45	5.69	3.37	5.18	1.39	0.59	768.00
50	Uliyapattu	1700.00	2.74	6.00	8.22	2.94	4.76	1.10	0.48	1088.00

Fig.1. Map Showing Water sample of Arasalaru Sub-Basin, Cauvery Basin

Fig.3. Map Showing Magnesium Concentration of Arasalaru Sub-Basin, Cauvery Basin

Fig.2. Map Showing Calcium Concentration of Arasalaru Sub-Basin, Cauvery Basin

Fig.4. Map Showing Chloride Concentration of Arasalaru Sub-Basin, Cauvery Basin

Fig.5. Map Showing Electrical Conductivity of Arasalaru Sub-Basin, Cauvery Basin

Fig.6. Map Showing of Bicarbonate Concentration Arasalaru Sub-Basin, Cauvery Basin

Fig.7. Map Showing Nitrate Concentration of Arasalaru Sub-Basin, Cauvery Basin

Fig.9. Map Showing Sulphate Concentration of Arasalaru Sub-Basin, Cauvery Basin

Fig.8. Map Showing pH Concentration of Arasalaru Sub-Basin, Cauvery Basin

Fig.10. Map Showing Total Dissolved Solids (TDS) Concentration of Arasalaru Sub-Basin, Cauvery Basin

Table 3. Physio-Chemical Characteristics of Arasalaru River Sub - Basin, Cauvery Basin, Tamil Nadu

S. No	Location	RSC	SAR	NCH	P.I	TH	NA%	CR	MR	CAI – I	CAI - II	GIBBS I	GIBBS II
1	Sarukkai	-6.92	0.88	-12.19	25.66	0.365	18.78	4.16	74.14	0.53	0.58	0.4720	0.9022
2	Vannivadi	-6.04	1.43	-147.72	39.54	0.539	26.17	4.12	75.89	0.03	0.02	0.50197	0.5541
3	Mudutheruvu	-4.62	1.13	-145.32	39.93	0.384	22.9	4	84.50	-0.53	-0.13	0.65706	0.3274
4	Vellai Pillaiyam Pettai	-6.39	1.55	-76.91	39.48	0.404	27.9	4.5	74.16	-0.48	-0.27	0.59961	0.5538
5	Swamimalai	-3.58	1.81	-111.08	49.13	0.296	31.72	4.33	59.62	-0.72	-0.24	0.53501	0.4060
6	Cholanmaligai	-4.18	0.95	-118.32	39.35	0.334	21.05	5	76.19	-0.00	-0.00	0.52818	0.4145
7	Dharasuram	-3.02	0.95	-143.49	43.99	0.300	21.54	4.33	75.20	-0.03	-0.01	0.52547	0.3485
8	Ariyapuram	-3.78	2.39	-114.8	55.33	0.31	40.84	3.75	66.29	-0.10	-0.07	0.67189	0.6164
9	Ariyatidal	-3.38	1.37	-105.4	47.84	0.28	29.74	4.33	64.46	-0.48	-0.17	0.54357	0.4188
10	Vilvarayanallur	-4.69	1.13	-138.44	39.85	0.353	24.00	4	71.31	0.07	0.02	0.57622	0.4509
11	Muthupillai Mandapa	-3.67	2.30	-147.25	54.37	0.337	38.52	4.33	77.92	-0.36	-0.21	0.73951	0.5016
12	Chettimandapam	-3.36	2.18	-81.41	55.84	0.254	40.67	4.5	62.86	-0.10	-0.09	0.64869	0.6476
13	Kuthanur	-2.25	3.42	-116.33	68.42	0.233	52.83	4	70.23	-0.80	-0.51	0.79003	0.5451
14	Villiyavarambal	-5.25	3.62	-145.67	58.14	0.416	47.34	4.33	64.10	-0.21	-0.25	0.71469	0.6670
15	Alagaputhur	-2.62	2.93	-130.65	63.37	0.267	47.70	4.66	67.47	-0.48	-0.33	0.7371	0.5474
16	Nachiar Kovil	-1.85	2.42	-162.3	63.00	0.26	42.92	4	56.92	-0.67	-0.28	0.6357	0.4112
17	Tandanthottam	-3.01	3.55	-138.11	64.91	0.294	50.79	4.22	62.81	-0.35	-0.31	0.7351	0.6102
18	Thukkachi	4.09	4.38	-630.31	71.26	0.434	53.23	4.2	66.16	-0.99	-0.31	0.7708	0.2795
19	Pudukudi	-10.89	3.14	-91.03	45.44	0.648	38.44	4.66	73.47	-1.46	-0.96	0.7019	0.6126
20	Keerangudi	-3.66	1.95	-111.49	52.34	0.300	36.74	4	75.20	0.08	0.06	0.7008	0.6178
21	Sarguneshwarapuram	-5.50	2.50	-139.54	64.92	0.423	38.43	4.16	53.42	0.11	0.12	0.5726	0.6666
22	Maruthuvakudi	-11.10	1.23	-111.4	28.49	0.68	19.33	4	84.63	0.24	0.23	0.6093	0.6328
23	Thiruvizhimizhalai	-5.01	2.14	-98.38	49.19	0.356	36.31	4.28	69.24	-0.13	-0.11	0.6496	0.6304
24	Vadugakudi	-6.35	1.60	-98.51	40.37	0.424	27.99	4	67.72	0.13	0.14	0.5463	0.6397
25	Manandakudi	-4.44	2.05	-191.07	49.05	0.421	36.99	4.37	79.95	-0.18	-0.12	0.7454	0.5128
26	Kovilpathu	-7.10	3.08	-144.31	50.75	0.509	40.72	4.25	58.88	-0.71	-0.64	0.6255	0.5690
27	Poonthottam	-7.77	3.45	-128.45	51.84	0.527	43.22	4.2	71.65	-0.58	-0.63	0.7286	0.6458
28	Injikudi	-2.99	2.39	-154.79	57.58	0.310	40.52	4.14	68.76	-0.21	-0.14	0.6855	0.5201
29	Andakudi	-5.43	3.64	-96.49	58.28	0.375	48.45	4.44	72.17	-0.47	-0.81	0.7715	0.6972
30	Kizhkudi	-1.74	2.66	-255.02	60.60	0.349	45.12	4.16	62.02	0.03	0.03	0.6729	0.5304
31	Rettaikudi	-3.77	2.85	-124.61	58.32	0.319	45.94	4.4	50.07	-0.03	-0.04	0.6299	0.6666
32	Ambal	-6.62	2.51	-90.4	47.86	0.43	39.48	4.4	74.53	-0.08	-0.13	0.7192	0.7234
33	Parakudi	-6.78	4.36	-140.71	58.53	0.489	49.89	4.2	75.58	-1.51	-0.85	0.8031	0.5637
34	Vichchiyur	-5.64	2.15	-162.92	47.14	0.454	33.62	4.1	76.98	0.06	0.05	0.6875	0.5875
35	Kidamangalam	-7.51	2.91	-108.62	48.92	0.494	39.57	4.25	65.58	-0.59	-0.69	0.6561	0.6314
36	Naliazhandu	-5.34	2.79	-153.42	52.78	0.429	40.33	4.42	81.46	-0.56	-0.43	0.7848	0.5344
37	Mattur	-5.16	3.11	-145.76	56.05	0.412	43.33	4.5	75.84	-0.47	-0.38	0.7599	0.5815
38	Kokapadi	-8.60	2.60	-111.45	44.76	0.552	35.87	4.41	68.41	0.01	0.02	0.6390	0.7187
39	Alayankudi	-4.17	4.55	-122.25	65.87	0.337	55.27	4.14	77.92	-0.21	-0.26	0.8484	0.7278
40	Sellur	-7.00	2.54	-126.28	47.25	0.486	36.55	4.27	79.52	-0.00	-0.00	0.7378	0.6722
41	Serumavilangai	-8.28	2.93	-102.95	47.62	0 527	39.13	4 09	69.28	-0.27	-0.29	0.6766	0 7020
42	Mel Kasakudi	-4.68	2.88	-86.46	51.45	0.327	38.71	4	66.51	0.04	0.04	0.6534	0.6985
43	Pillaithiruvasal	-7.24	3.08	-151.52	50.45	0.524	40.18	4.37	61.92	-0.70	-0.66	0.6382	0.5609
44	Thirunallar	-5.30	1.65	-96.62	43.69	0.369	30.18	4.5	68.97	0.26	0.27	0.5821	0.6744
45	Puduthurai	-6.47	1.95	-89 57	43 44	0.421	32.29	4 16	76 98	-0.35	-0.22	0 6744	0.6032
46	Karaikal	-4 54	2.20	-140 5	50.85	0 375	36.76	4	70.13	-0.15	-0.12	0.6606	0 5621
47	Kiliniumedu	-10.69	2.12	-141 7	37.80	0.69	28 90	4 1 4	66 73	-0.62	-0.44	0.55	0.5266
48	Viludivur	-5.15	1.58	-159	43 28	0.425	28.03	4.33	72 47	-0.07	-0.04	0.5858	0.4806
49	Tudapanamulai	-2 57	3.30	-162.56	64 66	0.297	48.92	44	58.08	-0.10	-0.09	0.6955	0.6058
50	Ulivapattu	-5.80	3.90	-138.26	58.42	0.437	48.47	4.44	68.64	-0.73	-0.76	0.75	0.6181
20		2.00	5.70		20.12	0.157			00.01	0.15	0.70	0.10	0.0101

POST-MONSOON WILCOX 'S DIAGRAM

Fig.11. Map Showing Sodium Percentage of Arasalaru Sub-Basin, Cauvery Basin

able 4. Classification of Sodium Adsorption Ratio in	
Groundwater	

SAR	Water Quality	No. of Sample	Percentage
0-6	No problems	40	80
6-9	Increasing problems	6	12
7-9	Severe problems	4	8

Table 5. Residual Sodium Carbonate in Groundwater in the Arasalaru Sub-Basin

RSC (epm)	Water category	No. of sample	Percentage of sample
<7	Safe	27	54
8-10	Marginally	13	26
>10	Unsuitable	10	20

Fig.12. Map Showing Sodium (Alkali) Hazard of Arasalaru Sub-Basin, Cauvery Basin

Fig.13. Map Showing Piper Diagram of Arasalaru Sub-Basin, Cauvery Basin

Percentage of Sodium

In all natural waters percent of sodium content is a parameters to assess it suitability for agricultural proposes (Wilcox, 1948), sodium combining carbonate can lead to the formation of alkaline soils, while sodium combining with chloride from saline soils. Both these soils do not help growth of plants. A maximum of 60% sodium in ground water us allowed for agricultural purposes (Ramakrishna, 1998). In the study area, total concentration of Percentage of Sodium ranges from 18.78 to 55.27 ppm in the groundwater samples within the Arasalaru River Basin. The samples are 80% of falls within the permissible limit and 20% of the sample falls more than the permissible limit. Maximum concentration values are found in the areas of Vanniyadi, Sargunashwarapuram, Kovilpathu, Pillaithiruvaasal and Kilinjumedu and minimum exists in the areas of Darasuram, Ariyapuram, Chettimandapam, Kuthanur and Injigudi.

Fig.14. Map Showing Gibbs Diagram of Arasalaru Sub-Basin, Cauvery Basin

Sodium Absorption Radio (SAR)

The reactivity of sodium ion, in exchange reaction, with soil is expressed as sodium adsorption ratio, which is an important parameter for the determination of suitability of water for irrigation. SAR is expressed by Richards (1954). In the study area, total concentration of Sodium Absorption Ratio ranges from 0.88 to 4.55 ppm in the groundwater samples within the Arasalaru River Basin. The samples are 90% of falls within the permissible limit and 10% of the sample falls more than the permissible limit. Maximum concentration values are found in the areas of Vanniyadi, Sargunashwarapuram, Kovilpathu, Pillaithiruvaasal and Kilinjumedu and minimum exists in the areas of Darasuram, Ariyapuram, Chettimandapam, Kuthanur and Injigudi.

$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

Residual Sodium Carbonate (RSC)

Residual Sodium Carbonate is defined as

$$RSC = (CO_3 + HCO_3) - (Ca + Mg)$$

T

Where all concentrations are expressed in epm.

The water having excess of carbonate an d bicarbonate concentration over the alkaline earth mainly calcium and magnesium, in excess of allowable limits affects agriculture unfavorably (Eaton 1950, and Richards, 1954). In the study area, total concentration of Percentage of Sodium ranges from -1.74 to -11.10 ppm in the groundwater samples within the Arasalaru River Basin. The samples are 90% of falls within the permissible limit. Maximum concentration values are found in the areas of Vanniyadi, Sargunashwarapuram, Kovilpathu, Pillaithiruvaasal and Kilinjumedu and minimum exists in the areas of Darasuram, Ariyapuram, Chettimandapam, Kuthanur and Injigudi.

Permeability Index

The classification of irrigation waters has been attempted based on the Permeability Index (PI), as developed by Doneen (1964)

$$PI = \frac{Na + \sqrt{HCO3}}{Ca + Mg + Na} X100$$

In the study area, total concentration of Permeability Index ranges from 25.66 to 71.26 ppm in the groundwater samples within the Arasalaru River Basin. The samples are 75% of falls within the permissible limit and 25% of the sample falls more than the permissible limit. Maximum concentration values are found in the areas of Vannivadi. Sargunashwarapuram, Kovilpathu, Pillaithiruvaasal and Kilinjumedu and minimum exists in the areas of Darasuram, Ariyapuram, Chettimandapam, Kuthanur and Injigudi.

The Piper diagram

The data plot in the Piper diagram show 50% of the samples in the central part of the diamond field, there by indicating non domination of any of the cation or anion pairs. About 50% of the samples are in the field of permanent hardness and the remaining in the temporary hardness field. The hydrogeochemical observations are not supporting direct seawater ingress though the groundwater samples have a marine signature. Alternative of the diamond field was suggested and he has recommended a rectangular field and it was applied for splitting the triangles (Piper, 1944).

Gibbs

The chemistry of the groundwater may to dominated due to rock dominance, evaporation dominance or preciation dominance or the mixture of these factors. In this diagram, two rations have been calculated for anions and cations respectively.

For Anion Gibbs Ratio I = Cl/(CL+HCO3)For Cation, Gibbs Ratio II = (Na+K)(Na+K+Ca)In both the rations all the ions are expressed in epm.

Gibbs I and Gibbs II respectively shown in indicate that most of the groundwater samples of Arasalaru river reveal that the weathering of parent rocks primarily controls the major ion chemistry of groundwater in the study area. In the study area, total concentration of Gibbs Diagram ranges Gibbs I from 0.47 to 0.84 ppm and Gibbs II from 0.27 and 0.90 in the groundwater samples within the Arasalaru River Basin. The samples are 90% of falls within the permissible limit and 10% of the sample falls more than the permissible limit. Maximum concentration values are found in the areas of Vanniyadi, Sargunashwarapuram, Kovilpathu, Pillaithiruvaasal and Kilinjumedu and minimum exists in the areas of Darasuram, Ariyapuram, Chettimandapam, Kuthanur and Injigudi.

Total Hardness

The common denominator of the majority of water problems is hardness. Hardness is one of the folk terms inherited from the past with origins in household use of water for washing. In the study area, Total hardness concentration ranges from 0.26 to 0.69 ppm in the groundwater samples. The samples are found 100 percentage more than the permissible limit. Total Hardness in the Arasalaru Sub Basin could be seen from this figure the maximum concentration are seen in the area North West, South, South Western and North Central part of the study area.

Magnesium Ratio

Magnesium ratio may be explained as the excess amount of Magnesium over calcium and Magnesium with will be in condition of equilibrium (Das *et al.*, 1988).

It is defined as

$$HR = \frac{Mg X 100}{Ca + Mg}$$

The Magnesium Ratio of groundwater varies from 50.07 to 84.63 (Table 3). Magnesium Ratio are found to be more than the permissible limit in all water samples area. High Mg ratio is due to surface water and subsurface water more reacted and limestone, kankar, clay, sand, gravels and some of the isolated pockets Cuddalore sandstones are found in the study area.

Corrosivity Ratio

When groundwater is supplied through iron pipers and concrete pipes the properties like corrosion and encrustation are to be evaluated in order to safeguard the water supply systems. Corrosion in normally an electrolytic process, which attacks and corrodes away the metal surfaces (Kaiser 1958). The range at which corrosion begins depends upon a number of chemical equilibrium reactions as well as upon specific physical factors such as temperature, pressure and velocity of flow. It has also been noticed by Raman (1985) that the lack of carbonate and sulphate, which increases the corrosion rate. Groundwater is obtained from this Arasalaru Sub-Basin, to augment the surface water facilities and is being transported through conventional metallic pipes those metallic pipes may or may not be suitable for the transport of water this report can be highlighted using the corrosivity ratio suggested.

$$CR = \frac{\binom{Cl}{35.5} + 2(\frac{SO4}{96})}{\frac{HCO3 + CO3}{100}}$$

Where all concentration is expressed in ppm.

Conclusion

The significant correlation between the score and the salinity of groundwater in three locations (Ariyatidal, Darasuram, Poonthottam) with no significant loading of Na and F1 score could be due to the influence of marine aerosol. The strong correlation between F3 score, pH/ CO₃ indicates dissolution of HCO₃ gradually into CO₃ under high pH conditions. The Na:Cl ratio, and chemical facies study (through piper diagram) did not indicate seawater intrusion into groundwater. The factors that played significant role in shaping the chemistry and quality of groundwater in the phreatic aquifers are attributable to tidal inlets and or contribution from marine aerosols. The hydrogeochemical characterization by factor analyses has revealed that the results of factor analyses and hydrogeological aspects in the area are correctable.

Acknowledgement

The authors thank Sri B.M. Jha, Chairman, CGWB, New Delhi for giving permission to publish this paper. Dr.V.Prasannakumar, Prof. and Head, Dept. of Geology, University of Kerala is thanked for his encouragement. Dr. Manoj Chacko, Lecturer, Dept. of Statistics, University of Kerala is acknowledged for his statistical inputs.

REFERENCES

- ABBI, A.K. and Puranik, S.C. 2000. Groundwater Exploration in Chikka Halla Basin, Dharwad District, Karnataka. Jour. Appl. Hydrology, v.XIII, Nos.3&4, pp.14-19.
- BIS. 1991. Indian standard specification for drinking water. IS: 10500, Indian Standard Institute, New Delhi.
- CGWB. 2000. Ground water resources and development potential of Alleppey district, Kerala, pp.1-30.
- Das S.N., Narula K.K. and Laurin R. 1992. Run-off estimation potential indices of watersheds in Tilaiya catchment, Bihar (India) through use of remote sensing and implementation of GIS. Jour. Indian Soc. Remote Sensing, 20:207-221.
- Doneen, L.D. 1964. Notes an water quality in agriculture. Water Science and Engineering Paper 4001, California, Department of Water Science and Engineering, University of california.
- Eaton, E.M. 1950. Significance of carbonate in irrigation water Soil. Sci., v.69, pp.123-133.
- Freeze, R.A. and Cherry, J.A. 1979. Groundwater. Prentice-Hall, Inc, New-Jersey, 604p.
- Giridharan, L., Venugopal, T. and Jayaprakash, M. 2008. Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the Groundwater in the proximity of River Cooum, Chennai, India. Environ. Monit. Assess., v.143, pp.161-178.
- Guptaa, 2009. Hydrogeology of Kurukshetra district, Central Ground Water Board Report.
- Hedge, S.N. and Puranik, S.C. 1992. Trace elements in groundwater of Hubli City, Karnataka, India. Curr. Sci. v.63, No.1, pp. 43-44
- Hedge, S.N., and Puranik, S.C. 1996. Groundwater Quality Studies of Hubli-Dharwad Municipal Corporation Area, Karnataka. Proc. IX Conv. Indian Geological Congress, pp. 236-239
- Hedge, S.N., Puranik, S.C. and Abbi, A.K. 1992. Groundwater Quality Deterioration in Hubli City Area. *Indian Jour. Environ. Health*, v.34, no.2, pp. 138-142

- Hedge, S.N., Torganth, N. and Puranik, S.C. 1999. Evaluation of groundwater quality in Dug and Borewells, Hubli City, Karnataka. Groundwater and Watershed Managemant, Sess. Vol. Dept. of Geology, Jaihind College, Deopur, Dhule (MS), pp. 89-96
- Hem, J.D. 1991. Study and interpretation of the chemical characteristics of natural water, U.S. Geol. Surv. Water-Supply Paper, v.254, 264p
- Jalali, M. 2007. Hydrochemical identification of Groundwater resources and their changes under the impact of human activity in the chah basin in western Iran. *Environ. Monit. Assess.*, V.130, pp.347-364.
- Jin, S., & Feng, G. 2013. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. *Global and Planetary Change*, 106, 20–30.
- Kaiser, H.F. 1958. The varimax criterion for analytic rotation in factor analysis. *Psychometrika*, v.23, pp.187-200
- Krishna, K.S., Rammohan, V., Rajkumar, S.J. and Jeevanandam, M. 2009. Assessment of Groundwater quality and hydrogeochemistry of Manimuktha River Basin, Tamil Nadu, India, *Environ. Monit. Assess.*, V.159, pp. 341-351.
- Mitra, B.K, Sasaki, C., Enari, K., Matsuyama, N. and Fujita, M. 2007. Suitability assessment of shallow Groundwater for agriculture in sand dune area of northwest Honshu Island Japan. *App. Eco. Environ. Res.*, v.5(1), pp.177-188.
- Muniswamy, M., Bhat, S.K., More, R.M., Nidagundi, S.R., Kanakudti, T.M. and Kawatekar, H.G. 1993. Groundwater resources of Dharwad district, Govt. Karnataka, DMG, GWS, Dharwad, 40p.
- Munn, L. 1936a. A note on the salinity in relation to Soil and Geology in Raichur district. *Jour. Hyderabad Geol. Surv.*, v.3(1), pp.83-90.
- NRSA 1995. Integrated Mission for Sustainable Development (IMSD) - Technical guidelines, National Remote Sensing Agency, Hyderabad.
- Piper. A.M. 1944. A graphic procedure in the geochemical interpretation of water analysis Geophysics. Union Trans., 25, pp.914 – 923.

Rama Krishna 1998. Ground water, Hand Book, India, 556p.

- Raman, V. 1985. Impact of Corrosion in the conveyance and Distribution of water, *Jour. Of the I.W.W.A.*, V.XV. No. 11, pp.115-121
- Rao, N.S. 2008. Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India, *Environ. Monit. Assess.*, v.138, pp.327-341.
- Richard.L.A. 1954. Diagnosis and improvement of saline and alkali soils. US department of Agriculture Handbook, pp.60
- Sac 1986. Report on the ground water potential maps of Rajasthan (Based on visual interpretation of Landsat Thematic Mapper Data), Space Application Centre, Ahmadabad.
- Sahai, B. 1993. Remote sensing of deserts, the Indian experience, *J. Arid Environments*, 25(1): 173-185.
- Saleh, Aris, A.Z. and Ahmed, A. 1999. Controlling factors of groundwater hydrochemistry in a small islands aquifer Int. *Jour. Environ. Sci. Tech.*, V.4(4), pp.441-450
- Shah, T. 2010. Taming the anarchy: Groundwater governance in South Asia. Routledge.
- Shehata, M. 1999. Hydrogeochemical process operating within the main Aquifers of Kuwait. *Jour. Aris Environ.*, v.42. pp.195-209

- Srivastava, A., Tripathi, N.K. and Gokhale, G.K. 1999. Basement topography and aquifer geometry around Ken Garden, India, *Int. J. Remote Sensing*, 20(11): 2295-2305.
- Subhash Chandra, K.C. and Ganachari, S.N. 1981. Scope for conjunctive use of surface and groundwater resources, Tungabhadra project RBLLC command area, Bellary District, Karnataka. Groundwater studies No.2, CADA Tungabhadra projects, 3p.
- WHO 1984. Guideline for drinking water quality. Vol.2. Health criteria and other supporting information, WHO, Geneva,
- Wilcox, L.V. 1948. The Quality of water for irrigation, Use U.S. Dept. of Agriculture, Tech, Bull, 1962, Washington, D.C., 119p.
- Wilcox, L.V. 1955. Classification and use of irrigation water U.S. Department of Agriculture Circular 969, Washington, DC. 19 P.
- World Bank 2011. India groundwater governance. Washington: World Bank.
