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INTRODUCTION 
 
Hartmann flow is a classical problem that has many important 
applications in magnetohrdrodynamics (MHD) generators and 
pumps. Hartmann (1937) first studied an incompressible 
viscous electrically conducting fluid flow between two infinite 
parallel non-conducting stationary disks under the action of a 
transverse magnetic field. Under different physical conditions it 
was considered by Hughes and Young (1966
and Pai (1962). The solutions for the velocity fields in closed 
form were studied (Sutton and Sherman, 1965; Alpher, 1961; 
Cramer and Pai, 1973) under different physical effects. Due to 
the growing use of non-Newtonian fluids ma
manufacturing and processing industries, considerable efforts 
have been directed towards understanding their flows. Many 
workers (Rajagopal, 1992; Rajagopal and Gupta, 1981; Ersoy, 
1999) examined the non-Newtonian fluid in different 
geometries. The one-dimensional rate type viscoelastic 
Burgers’ model (Burgers, 1935) has been used to characterize 
diverse viscoelastic materials; food products such as cheese, 
soil, asphalt, etc. Ravindran et al. (1973), Siddiqui 
Rana et al. (2007) has studied the Burgers’ fluid. Burgers 
(1935) proposed one-dimensional rate type visco
to describe the response of materials such as asphalt. Murali 
al. (2004, 2003) have developed a fully three dimensional 
model that satisfies the invariance of frame indifference. 
It is a nonlinear model and, unlike the Maxwell model and the 
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Hartmann flow is a classical problem that has many important 
applications in magnetohrdrodynamics (MHD) generators and 

first studied an incompressible 
viscous electrically conducting fluid flow between two infinite 

conducting stationary disks under the action of a 
transverse magnetic field. Under different physical conditions it 

1966), Cowling (1957) 
. The solutions for the velocity fields in closed 
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under different physical effects. Due to 

Newtonian fluids material in many 
manufacturing and processing industries, considerable efforts 
have been directed towards understanding their flows. Many 
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Oldroyd-B model, etc., it involves the stress being 
differentiated twice with respect to the Oldroyd upper 
convected derivative. This model can be linearlized by 
requiring that the elastic responses are sufficiently small from 
the appropriate natural configuration. Linearizing the model 
and restricting it to one dimension leads to model proposed by 
Burgers (1935). The extra stress and the symmetric part of the 
velocity gradient involved in this model have higher order 
Oldroyd derivatives. It turns out that in general we need 
additional boundary as well as initial conditions. This issue 
crops up with regards to several non
So the issue of whether the no
sufficient to have a well-posed problem is very important. The 
detailed critical review on the boundary conditions, the 
existence and uniqueness of the solution has been given by 
Rajagopal (1995, 1982), Rajagopal and Kaloni 
Rajagopal et al. (1986). Rajagopal and Gupta 
the boundary conditions and studied the flow of a second grade 
past a porous plate. Unfortunately, the above investigations do 
not include the Hall effect. The Hall term was ignored in 
applying Ohm’s law as it has no remarkable effect for 
and moderate values of the magnetic field. The recent trend, 
however, for the applications
magnetic field, so that the influence of electromagnetic force is 
noticeable (Cramer and Pai, 1973
with Hall currents has important engineering applications in 
flight MHD, MHD generators and Hall accelerators. Hossain 
(1986), Hossain and Mohammad 
Ahmed (2004), Attia and Aboul
et al. (2006, 2007) studied the Hall effects. Keeping the above 
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mentioned facts in this paper, we have considered MHD 
oscillating flow of an incompressible electrically conducting 
Burger’s fluid through porous medium in a pipe under the 
influence of uniform magnetic field and taking Hall current 
into account. The considered fluid model is a visco-elastic 
model and has been used to characterize food products such as 
cheese (Alpher, 1961), soil (Cramer and Pai, 1973), asphalt and 
asphalt mixes (Rajagopal, 1992; Rajagopal and Gupta, 1981) 
etc. 
 
Formulation and solution of the problem    
 
We consider MHD flow of an incompressible electrically 
conducting non-Newtonian fluid through a porous medium in 
pipe under the influence of uniform transverse magnetic field 
taking Hall current into account.  
 
The constitutive equation for a Burger’s fluid is 
 

11 r

S
T pI S , S A

t t

 
  
 

 
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                   (1) 

 

In which T  
is the Cauchy stress tensor,

 p  
is the reaction 

stress due to constraint of incompressibility,
 S  

is the 

constitutively determined extra stress, 1A  
is the first Rivlin-

Ericksen tensor,    
the relaxation time,   

is the dynamic 

viscosity,  r   
is the retardation time and the upper 

convected derivative is 
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t dt




                                                            (2)  

 
 Where L  is the velocity gradient. 
 
In the following we consider an axially symmetric and fully 
developed flow of a Burger’s fluid whose extra stress tensor 
and velocity field, in a system of cylindrical polar coordinates 
are of the form 
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Where the initial condition  0 0S r ,   i.e. the fluid being at 

rest up to the moment at 0t   holds and the imposed 
oscillating pressure gradient is 
 

0

0
i tp

P e
z





                                                                           (4) 

 

Where 0  is the oscillating frequency and 0P  is the 

amplitude. Moreover the z-axis acts as the axis of the cylinder 

and a uniform magnetic field 0B  is applied transversely to the 

axis of the circular cylinder. The magnetic Reynolds number is 
assumed to be very small, so that the induced magnetic field is 
negligible. There is no applied voltage so the electric field 

0E   (Ersoy, 1999). If the Hall term is retained in generalized 

Ohm’s law then the following expression holds (Burgers, 
1935) 
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                     (5) 

 

In which B  is the total magnetic field, e  is the cyclotron 

frequency of electrons, e  is the electron collision time,   is 

the electrical conductivity, e  is the electron charge, en  is the 

number density of electron and ep  is the electron pressure. 

The ion-slip and thermoelectric effects are not included in Eq. 

(5). Further it is assumed that  1e e O  �  and 1i i   

where i  and i  are cyclotron frequency and collision time 

for ions respectively. 
 
The no-slip boundary condition for the problem under 
consideration is   
 

  0u a,t                                                                              (6) 

 
Where 
 
a  is the radius of the cylinder. 
 
By virtue of Eq. (3), the continuity equation is automatically 
satisfied and Eqs. (1) and (2) and balance of linear momentum 

gives 0rr r zS S S S p / r p /              and  

(Ravindran et al., 2004; Siddiqui et al., ?; Rana et al., 2007; 
Murali Kishnan and Rajagopal, 2004).  
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Where  
 

e em    is the Hall parameter,   is the kinematic 

viscosity, k  is the permeability of porous medium. 
 

Elimination rzS  of from Eqs. (7) and (8) yields 
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The above equations can be normalized using the following 
dimensionless parameters 

 
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Where 0U  is the reference velocity and   is the kinematic 

viscosity of the fluid. Accordingly, Eqs. (6) and (10) after 
neglecting the dimensionless mark " "  for simplicity reduce 
to 
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(12) 
 
The corresponding boundary conditions are   
 

 1 0u ,t                                                                          (13) 

 
In order to solve the governing problem we define the temporal 
Fourier transform pair as  
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Taking Fourier transform to Eqs. (12) and (13) and then 
solving the resulting problem, we have the following general 
solution 
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Where  0J   is the zeroth-order Bessel function,     is the 

dirac delta function and  
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The Fourier inversion of Eq. (16) after using the property of 
delta function gives 
 

 
 
 

 
 

0
0 0 0 0

2
0 0 0 0

1
1

1
i t

r

Q i J r
u r ,t e

i J
 

   

   
  

   
                 (17) 

 
Where 
 

0
0  

 


    

 

RESULTS AND DISCUSSION 
 
We have considered the MHD oscillating flow of an 
incompressible electrically conducting non-Newtonian 
(Oldroyd-B) fluid through porous medium in a pipe under the 

influence of uniform magnetic field and taking Hall current 
into account. An investigation is made to perceive the 
influences of magnetic field, permeability and Hall current on 
the flow of Berger’s fluid. The closed form analytical solution 
is obtained making use of Fourier transform technique. The 
computational work has been carried out for the governing 
flow through porous medium in a pipe making use of 
Mathematical software. This flow is governed by the non-
dimensional parameters like, M Hartmann number, K 

permeability parameter, m Hall parameter,   the rheological 

parameter and   the frequency of oscillation. For 
computational purpose we are fixing some parameters 

05, 1, 2, 1r Q t      . Special attention has been 

given to examine the velocity profiles for five different kinds 
of non-dimensional parameters, which are depict in the Figures 
(1-5).  
 

 
 

Fig.1. The velocity Profile against M with 1, 1, 1, 1 2K m .      

 

 
 

Fig.2. The velocity Profiles against K with 
1 5, 1, 1, 1 2M . m .      

 

 
 

Fig.3. The velocity Profiles against m with 

1 5, 1, 1, 1 2M . K .      
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Fig.4. The velocity Profiles against   with 

1 5, 1, 1, 1 2M . K m .     
 

 
 

Fig.5. The velocity Profiles against r  with 

1 5, 1, 1, 1M . K m      

 
We noticed that from the Fig.1, in the presence of magnetic 
force, an increase of the magnitude in the magnetic parameter 
M reduces the velocity profile monotonically due to the effect 
of the magnetic force against the flow direction. This is in 
accordance to the fact that the magnetic field is responsible to 
reduce the velocity. From the Figure (2), the velocity enhance 
with increasing the permeability parameter K throughout the 
fluid region. We also observe that lower the permeability lesser 
the fluid speed in the entire fluid medium. Similar behavior is 
observed with increasing Hall parameter m. Figure 3 shows 
that the increase of Hall parameter m for fixed magnetic 
parameter M increases the velocity profiles. Moreover, the 
velocity increases. Further, when the magnetic Reynolds 
number is very small, the flow pattern with Hall effect is 
remarkably analogous to that for the non-conducting flow. 
Obviously, the supposition of very small magnetic Reynolds 
number will be legitimate for flow of liquid metals or slightly 
ionized gas. Also from the Figures (4 & 5) appears that the 

velocity is an increasing function of the r,    of the 

Oldroyd-B fluid.  
 
Conclusion 
 
We have considered the MHD oscillating flow of an 
incompressible electrically conducting non-Newtonian 
(Oldroyd-B) fluid through porous medium in a pipe under the 
influence of uniform magnetic field and taking Hall current 
into account. The conclusions are made as the following. An 

increase of the magnitude in the magnetic parameter M reduces 
the velocity profiles monotonically due to the effect of the 
magnetic force against the flow direction. 
 

1. The velocity enhance with increasing the permeability 
parameter K or Hall parameter m throughout the fluid 
region.  

2. Lower the permeability lesser the fluid speed in the 
entire fluid medium.  

3. The solution of Oldroyd-B fluid only contributes if 
there is a pressure gradient of the oscillatory nature. 
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