

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 4, Issue, 06, pp.063-066, June, 2012

INTERNATIONAL JOURNAL OF CURRENT RESEARCH

ISSN: 0975-833X

RESEARCH ARTICLE

CHARACTERISTIC STUDY ON Ni₅₀Mn₄₅Sn₅ by DSC & X-RAY ANALYSIS

Ajit Behera*, Susanta Kumar Swain, Subash Chandra Mishra and Sudipta Sen

Department of Metallurgical & Materials Engineering, National Institute of Technology, Rourkela-769008, Odisha, India

ARTICLE INFO	ABSTRACT					
Article History: Received 24 th March, 2012 Received in revised form 11 th April, 2012 Accepted 17 th May, 2012 Published online 30 th June, 2012	The Martensitic Transformation in Ferromagnetic shape memory alloys (FSMAs) can be triggered not only by changes in temperature and stress as that of paramagnetic conventional shape memory alloys, but also by changes in the applied magnetic field. It is well known that ferromagnetic shape memory alloy has diversified utilization, but not satisfactorily use, mainly because of high cost of processing and high cost of alloying elements. Among all Heusler alloy, Ni-Mn-Sn alloy have potential properties and exhibits lower cost. In this experiment NigoMnueSns alloys characterize by					
Key words:	using differential scanning calorimetric (DSC), optical microscope and X-Ray diffraction technique.					
FSMA,	The alloy undergoes the martensitic transformation from L_2 1-type cubic structure into an orthorhombic structure.					

Copy Right, IJCR, 2012, Academic Journals. All rights reserved.

Ni-Mn-Sn allovs. Martensitic transformation

INTRODUCTION

Ferromagnetic shape memory alloys (FSMAs) have a characteristic feature by combining shape memory effect and the bulk ferromagnetic behavior. FSMAs have considerable potential microactuator materials because they show a large recovery strain upto 10% and a high responding frequency (KHz) (Chernenko et al., 1993; Wuttig et al., 2000; Choi et al., 2006). In this decade, many FSMAs systems have been investigated, such as Ni-Mn-Ga (Ullakko et al., 1996; Wu et al., 1999), Ni-Fe-Ga (Oikawa et al., 2002; Liu et al., 2003), Ni-Mn-Al (Fujita et al., 2000), Co-Ni-Ga(Al) (Wuttig et al., 2001; Oikawa et al., 200) and Ni-Mn-In (Thorsten et al., 2006; Thorsten et al., 2007). There have been many reports on their structure. magnetic properties, martensitic transformation, magnetically controlled shape memory effect, superelasticity and magnetic-field-induced strains (MFIS). Magnetic shape memory effect in these materials involves the movement of twin boundaries which results in the growth of one of the twin variants at the expense of the other in response to an applied magnetic field below the martensitic transformation temperature (Choi et al., 1770). Formation of martensite variant is accompanied by a defined shape strain; the microscopic shape of the material does not change as a whole before or after the transformation. This is due to selfaccomodation of martensite formation (Bhattacharya et al., 1992). A martensitic phase generally accommodates the strain associated with the transformation by slip or by a formation of twin variants that pack together in compatible orientations to minimize strain energy between the martensitic region and the surrounding untransformed, highly symmetric parent phase. By the growth of one variant of the twin at the expense of the

other two is responsible to a large macroscopic recoverable strain in FSMA (Sutou et al., 2004; Liu et al., 2008). When finding strain for FSMA the total strain equals the sum of the parts:

$$\varepsilon^{\text{total}} = \varepsilon^{\text{elastic}} + \varepsilon^{\text{reorientation}}$$

where, $\varepsilon^{\text{reorientation}}$ is defined as $\varepsilon^{\text{reorientation}} = \varepsilon^{r, \text{max}} \xi$. ξ and $\varepsilon^{r,max}$ are defined as variant two volume fraction and maximum reorientation strain, respectively. ξ may be found analytically from a driving force function found from Gibbs free energy using the relations of a polynomial or trigonometric hardening function. Variant two, volume fraction, the variants like applied stress, heat, magnetic anisotropy energy, and other material properties which expands the specimen when exposed to magnetic energy (Kiefer et al., 2005; Karaman et al., 2007). Highest experimented stoichiometric Ni-Mn-Ga heusler alloy involving complete substitution of Ga with Sn, where chosen from a number of candidate alloys exhibiting martensitic transformation as suggested by Wutting et. al. (Choi et al., 2006). In recent study Mn- based Heusler alloys have been focus as one of the typical magnetocaloric effect material. Among them, it is found that Ni-Mn-Sn SMA is a less cost material due to lesser cost of Sn element. By considering cost, the goal of this investigation is to find a magnetic alloy exhibiting a martensitic phase transformation that would provide a large controllable displacement with the application of low magnetic field at reasonable operating temperature. In many experiment Ni-Mn-Ga alloys are widely examined for which it serves as a reference alloy. But the Husler alloys the choice of Ni-Mn-Sn alloy is due to:

- a) Ni-Mn-Sn not expensive as gallium.
- It does not contain toxic as that of gallium (Chatterjee b) et al., 2008).

^{*}Corresponding author: ajit.behera88@gmail.com

- c) Ni-Mn-Sn is less brittle than Ni-Mn-Ga (Brown et al., 2006).
- d) Low transformation and Curie temperature of stoichiometric Ni-Mn-Ga than Ni-Mn-Sn.
- e) The austenite and martensite phase of Ni-Mn-Sn have the same crystal structure as the corresponding phases of Ni-Mn-Ga and have the same magnetically easy axis (Choi *et al.*, 1770).
- f) Ni-Mn-Sn alloys are known to have comparably high $L_21/$ tetragonal transition temperature as that of Ni-Mn-Ga.
- g) Stoichiometric of Ni-Mn-Sn alloys reveals similar magnetostrictive behavior with respect to temperature as that of Ni-Mn-Ga alloys(Choi *et al.*, 1770).
- h) Ni-Mn-Ga alloys are insufficient for FSMA actuators (Sutou *et al.*, 2004).

 $Ni_{50}Mn_{45}Sn_5$ FSMs is a ternary intermetallic compound, which has the cubic L₂1-type structure. In this structure, the Ni ion occupy at the site of the cube corners (8c-site), and Mn and Sn ions are in the alternate body centers of the successive cubes (4a- and 4c- sit, respectively) (Koyama *et al.*, 2006), as shown in Figure 1.

Figure 1. Unit cell of Ni2MnSn FSMA. Different atomic sites are presented by bellow symbols

MATERIALS AND METHODS

A ternary polycrystalline Ni₅₀Mn₄₅Sn₅ Heusler alloys were prepared by using Ni, Mn and Sn elements having their commercial purity 99.95%, 99.9% and 99.99% respectively. The melting and boiling point of the different elements used in alloy preparation as shown in Table-1. For melting of this alloy nonconsumable arc under high purity atmosphere (99.996%) is used. For the preparation of allov ingot, the melting chamber was evacuated to a pressure of 1×10^{-5} torr and then was purged with pure argon. The process of evacuation and purging was repeated three times. The melting was carried out in an argon atmosphere and at a chamber pressure of nearly 500Mtorr. The entire melting process was repeated several times in order to get complete homogenization of the alloy. Then the alloy was cast into a rod form. The composition has been reported to form a martensite at room temperature (Ms= 337k) with martensitic Curie temperature, Tc close to room temperature (287K). The ingot was sealed in a quartz ampoule filled with helium gas and solutionized at 1000°C for 24 hour for homoginization.

The martensitic transformation and phase in these alloys successfully characterized by using Optical Microscopy, X-Ray Diffraction and Differential Scanning Calorimerty.

Table 1. M	elting and	Boiling	point of	different	element
	of I	Ni-Mn-S	n alloys		

Element	Melting Point (°c)	Boiling Point (°c)
Mn	1245	2150
Ni	1435	2730
Sn	232	2270

RESULTS AND DISCUSSION

Differential Scanning Calorimetry

To characterize the material behavior, it is important to identify the regions where the martensite phase exists at the transformation temperatures under zero stress. The magnetic shape memory effect is only present in regions consisting of stable martensite. These regions of stability however, are temperature dependent. The alloy absorbs, or emits, heat over a small change in the specimen temperature, when there is a phase transformation occurs in the material. The forward and reverse martensitic transformation of Ni₅₀Mn₄₅Sn₅ is shown in figure-2. In this figure number-1 represent as forward martensitic transformation and number-2 represent reverse martensitic transformation. The temperature was raised from 300°C to 500°C and lower from 500°C to 300°C at a rate of 5°C/min, while the baseline heat flow rate vs. temperature was recorded by the data acquisition computer. Martensitic start temperature (M_s) , Martensitic finish temperature (M_f) , austenitic starte temperature (As) and austenitic finish temperature (A_f) are 423.02°C, 403.73°C, 428.36°C and 452.99°C respectively. Here martensite starting temperature is higher and it is due to the lower percentage of Sn in that alloys (Martynov et al., 1992).

Figure 2 Martensitic Transformation For sample Ni₅₀Mn₄₅Sn₅

Microstructure of Martensite in different specimen

Figure-3 (a) shows the martensitis structure of $Ni_{50}Mn_{45}Sn_5$ FSMA and figure-3(b) shows the magnified martensitic boundary, which leads to motion during transformation. The martensitic transformation possesses well defined characteristics which is associated with an inelastic deformation of the crystal lattice with no diffusive process involved. The phase transformation results from a cooperative and collective motion of atoms on distances smaller than the lattice parameters. The absence of diffusion makes the martensitic phase transformation almost instantaneous. The reconstruction of martensitic domains is possible only in the case when their boundaries are mobile, i.e., if the martensite transformation is a thermoelastic one. Since the crystal lattice of the martensitic phase has lower symmetry than that of the parent austenitic phase, several variants of martensite can be formed from the same parent phase crystal. The large strain can either be caused by a magnetic field-induced structural reorientation (usually by twin boundary motion) shown in figure-3(d) or by a magnetic field-induced phase transformation (usually a martensitic phase transformation) shown in figure-3(c). The magnetic field-induced phase transformation is correctly referred to as MSM effect or as magnetically induced martensite/austenite (Tsuchiya et al., 2000). Some of the picture of NiMnSn sample taken from Optical Microscope are given below:

Figure 3 (a) A number of Martensitic layers present in $Ni_{50}Mn_{45}Sn_5$, (b) enlarged martensitic layer at 50X magnification showing martensitic layer boundary, (c) morphology of different orientation of martensite withen the grain at 20X magnification and (d) showing the twin boundaries present.

X-Ray Diffraction

The obtained sample was confirmed to be a single phase with the L₂1 structure by XRD measurements at room temperature. The XRD experiment with CuK α radiation was made at 20°≤ 2 Θ ≤80° with a step size of 0.01°. Here the reflections by K α ₁ and K α ₂ radiations are observed. Bragg peaks denote the Miller Indices (hkl value), which confirm that the phase has L₂1 structure and 4O structure as shown in figure-4.

Figure 4. XRD pattern for Ni₅₅Mn₄₅Sn₅ alloy

CONCLUSIONS

The behavior of Ni-Mn-Sn alloys reported in this literature has better properties than other Heusler alloy. The higher martensitic transformation temperature of NiMnSn alloys leads to work under higher working temperature than NiMnGa alloys. The Ni₅₅Mn₄₅Sn₅ FSMAs undergoes the martensitic transformation from L₂1-type cubic structure into an orthorhombic structure.

REFERENCES

- Bhattacharya Kaushik. 1992. Self-accommodation in martensite. Arch. Rational Mech. Anal., 120, 201-244. Springer-Verlag 1992.
- Brown P. J. et al., 2006. J. Phys: Condens. Matter 18, 2249.
- Chatterjee S., Giri S., De S. K. and Majumdar S. 2008. Magnetic Investigations on Ni-Mn-Sn Ferromagnetic Shape MemoryAlloy. Advanced Materials Research Vol. 52, 215-220.
- Chernenko V.A., Kokorin V.V. 1993. Monterey Institute for Advanced Studies. 1205-1210.
- Choi Byung Sang. 2006. Thermal, Magnetic and Magnetoelastic data on three different Heusler alloys based on Ni-Mn-X(X=Ga,In or Sn). IEEE Transaction on Magnetic, vol.42, no.7. 1770.
- Choi Byung Sang. 2006. Thermal, Magnetic and Magnetoelastic data on three different Heusler alloys based on Ni-Mn-X(X=Ga,In or Sn). IEEE Transaction on Magnetic, vol.42, no.7.1770.
- Fujita A., Fukamichi K., Gejima F., Kainuma R., Isshida K. 2000. Magnetic properties and large magnetic-fieldinduced strains in off-stoichiometric Ni–Mn–Al Heusler alloys. Appl. Phys. Lett. 77, 3054-3056.
- Karaman et al. 2007. Energy harvesting using martensite variant reorientation mechanism in NiMnGa magnetic shape memory alloy. Applied physics letters, 90, 172505.
- Kiefer B. and Lagoudas D. C. 2005. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philosophical Magazine, vol. 85, 4285-4329.
- Koyama K. and watanabe k. 2006. observation of fieldinduced reverse transformation in ferromagnetic shape memory alloy Ni50Mn36Sn14. Applied Physics Letters 88, 132505, DOI: 10.1063/1.2189916.
- Liu J., Scheerbaum N., Hinz D., Gutfleisch O. 2008. Martensitic transformation and Magnetic properties in NiFeGaCo magnetic shape memory alloy, Acta Materialia 56, 3177-3186.
- Liu Z.H. *et al* . 2003. Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa. Appl. Phys. Lett. 82, 424-426.
- Martynov V. V. and Kokorin V. V. 1992. The crystal structure of thermally- and stress-induced martensites in Ni2MnGa single crystals. J.Physique, vol. III 2, 739-749.
- Oikawa K. *et al* . 2001. Promising ferromagnetic Ni–Co–Al shape memory alloy system, Appl. Phys. Lett. 79, 3290-3292.
- Oikawa K. *et al*. 2002. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys. Appl. Phys. Lett. 81, 5201-5203.
- Sutou Y. 2004. Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys. vol 85, no 19.

- Sutou Y., Imano Y., Koeda N. 2004. Magnetic and martensitic transformations of NiMnX.X=In,Sn,Sb ferromagnetic shape memory alloys. Applied Physics Letters. Vol 85, no 19. DOI: 10.1063/1.1808879.
- Thorsten Krenke *et al*. 2006. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys. Physical Review B 73, 174413, DOI: 10.1103/PhysRevB.73.174413.
- Thorsten Krenke *et al*. 2007. Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Physical Review B 75, 104414. DOI: 10.1103/PhysRevB.75.104414
- Tsuchiya K. *et al* . 2000. Phase transformations and magnetostriction in Ni-Mn-Ga ferromagnetic shape memory alloys. Mater. Trans., JIM, vol. 8, 938-942
- Ullakko K., Huang J.K., Kantner v, Handley R.C., Kokorin V.V. 1996. Large magnetic-field-induced strains in Ni₂MnGa single crystals. Appl. Phys. Lett. 69, 1966-1968.
- Wu G.H.*et al*. 1999. Giant magnetic-field induced strains in Heusler alloy NiMnGa with modified composition. Appl. Phys. Lett. 75, 2990-2992.
- Wuttig M., Li J., Craciunescu C.2001. A new ferromagnetic shape memory alloy system, Scripta Mater. 44, 2393-2397.
- Wuttig M., Liu L., Tsuchiya K., James R.D. 2000. J. Appl. Phys. 87, 4707-4711.
