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INTRODUCTION

In this paper, al the graphs consider here are ssimple and finite.
For any undefined terms or notation can be found in Harary
(Harary, 1972). In general, we use <X>  to denote the

subgraph induced by the set of vertices £ and ¥(v) and N((v))
denote open (closed) neighborhoods of a vertex ¥. Let degiv)

is the degree of vertex ¥ and as usual )@ js the
minimum (maximum) degree. A vertex of degree one is called
an end vertex and its neighbor is called a support vertex. The

degree of an edge € =4 of €& s defined by
deg(a} = deg{u] + deg{v]' and & (GIA(EY) is the minimum
(maximum) degree among the edges of &. The notation
a,(6)(a;(6)) s the minimum number of vertices (edges) in
vertex (edge) cover of G. The notation B:(G)(B:(6)) s the
maximum cardinality of a vertex (edge) independent set in &
A set S VI(6) is said to be a dominating set of &, if every
vertex in V' = 3 js adjacent to some vertex in <. The minimum
cardinality of vertices in such a set is caled the domination

number of & and is denoted by ¥(&). The concept of edge
dominating sets were also studied by Mitchell and Hedetniemi
in (Mitchell and Hedetniemi, 1977).

*Corresponding author: Nawazoddin U. Patel,
Department of Mathematics Gulbarga University, Kalaburagi — 585106,
Karnataka, India.

An edge dominating set of & if every edge in £ -F is adjacent
to at least one edge in F. Equivalently, a set Fedgesin © is
called an edge dominating set of G if for every edge e E-F,
there exists an edge #: € F such that ¢ and €1 have a vertex in
common. The edge domination number »@ of graph & isthe
minimum cardinality of an edge dominating set of G A
dominating set = is called the total dominating set, if for every
vertex v €V, there exists a vertex «€S5, «=v such that ¥ is
adjacent to . The total domination number of G is denoted by

7(6) is the minimum cardinality of total dominating set of &.
A dominating set $=V(¢) is a connected dominating set, if the
induced subgraph = 5 = has no isolated vertices. The connected

domination number ¥« (&) of € is the minimum cardinaity of
a connected dominating set of ©. A dominating set 2=V (G s
restrained dominating set of G if every vertex not in Sis
adjacent to a vertex in ¥ and to a vertex in V{6) =S5, The
restrained domination number of a graph & is denoted by
¥-(6) is the minimum cardinality of a restrained dominating
setin &. The concept of restrained domination in graphs was

introduced by Domke et al. (1999). A dominating set 2 of a
graph ¢ =(¥.E) is an independent dominating set if the induced
subgraph = D = has no edges.
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The independent domination number i) of a graph € is the
minimum cardinality of an independent dominating set
(Haynes et al., 1997; Robert B.Allan and Renu Laskar, 1978).
The concept of a dominating set P of a graph © is a strong
split dominating set if the induced subgraph (7 -D) is totally
disconnected with at least two vertices. The strong split
domination number 7=(6) of graph & is the minimum
cardinality of a strong split dominating set of &. A dominating
set D of agraph © isagloba dominating set if 2 isaso a
dominating set of &. The global domination number () in
the minimum cardinality of a global dominating set of ¢. This
concept was introduced independently by Brigham and Dutton
(Brigham and Dutton, 1990; Sampathkumar, 1989). The
concept of Roman domination function (RDF) on aline graph
Li¢y=.Elisafunction f:v =012} satisfying the condition
that every vertex u for which () =20isadjacent to at least
one vertex of ¥ for which flv)=2in L(E), The weight of a
Roman dominating function is the value ) =Zue fx), The
minimum weight of a Roman dominating function on a line
graph L(&] is called the Roman domination number of a graph
L(G) and is denoted by ¥a(L(G)) (see (9)). The concept of
domination in graphs with its many were found in graph theory
(Haynes et al., 1998; Haynes et al., 1999; Kulli et al., 1999;
Panfarosh et al., 2014). Analogously, a dominating set £ of a
line L(€) is a cototal dominating set if the induced subgraph
< V(L) -0 > has no isolated vertices. The cototal domination
number () is the minimum cardinality of a cototal
dominating set of L(&)(Panfarosh et al., 2014). The concept of
Strong domination was introduced by Sampathkumar and
Pushpa Latha in (1996) and well studied in (Muddebihal and
Nawazoddin U. Patel, 2014; Muddebihal and Nawazoddin U.
Patel, 2015; Muddebihal et al., 2015). Given two adjacent
vertices ¥ and ¥ we say that ¥ strongly dominates ¥ if
deg (u) = deg (v), A set D=V (6) is strong dominating set of & if
very vertex in ¥ - Dis strongly dominated by at least one vertex
in 2. The strong domination number ¥:(6) is the minimum
cardinality of a strong dominating set of G. A dominati ng set
D of a graph L@ is a strong Line dominating set if every
vertex in  (V(L6)]- D) is strongly dominated by at least one
vertex in 2. Strong Line domination number s (6) of € isthe
minimum cardinality of strong Line dominating set of G In
this paper, many bounds on rs: (¢) were obtained in terms of
elements of & but not the elements of L(G). Also its relation
with other domination parameters were established. We need
the following theorem for our further results.

Theorem A(4): for any (#:4) graph G, ¥©) = .
Main results

Theorem 1: For any non trivial @.4) tree with » =23 and ™

end vertices, thenvs (G)<m.  Equaity holds if
T=FR.4=sn=7

Proof: Let A = {vy va v oo s 1 € VI(T) pe the set of

all end vertices in 7 with l4l =m_ Suppose D v-4pethe
set of all non end vertices then each block incident with the
vertices of D gives acomplete subgraphin (7).

If deg(u)=2 uweV(L(T), then D = {uy i 4z .ot} € VIL(T)]
such that deg (up) = deg (uy) Yux € V(L) =D and vu,. €D,
Suppose D= {us s btz ud 1 €€ m with D'
VILT] =D and deglu) =deg(up) Yu; € VILMI =D Then
{p'up forms a minima Strong dominating set of L(T),
Therefore, | 2 VD = m which gives 75 (6) = m, For equality
if f,4£n<7 holds, then for each A.”.Fand P have
m=2 gnce by Theorem A, 7 (B)=2=m 4=n=7

Then deg (v} = deg (uzx) wu,eD and Yur€ V(LG -D,

Hence the equality.

Theorem 2. For any connected (.4} graph ¢,
¥ G)+yG) =P-1

Proof: Let R =1{v; . w3.vz. iy} EV(G) be the set of

vertices with des(v)=2vy eR1<j<m Further let there
exists a set fic R of vertices with diam(u.v) = 3, vu,v e R,
which covers al the vertices in 6. Clearly R forms a
dominating set of &. Otherwise if diam(u.v) < 3then there
exists at least one vertex * € Ry such that ® =& u{x) form a
minimal ¥ =€t of C.Now by definition of L(G), let
H={uy g, tig) SVILIE)]  pe the st of vertices
such that {u:} ={e} € E(G), 1 =i = n where {#] are incident
with the vertices of R . Further let D = H be the set of vertices
with deg(w) =3  for every weD such that
N[D1=V(L(G)) and if v eVILE)]-D. Then {D}V (1]
fooms a Strong line dominating set. Clearly
[o3u 3l ulRT= W E) -1 and hence ¥ @) +¥E) <P -1

Theorem 3: For any connected (p.q) graph G,
ve (G = p— ¥, (6],
Proof: Let # ={vy.w3.¥5. v V] be the minimum set

of vertices which covers all the vertices in €. Suppose
deg(vj) 2z Lvy e Hul<j<m jnthe subgraph < Hy > then
H: formsa ¥: (6) —set of G Otherwiseif 62 (¥) <1 then
attach the vertices wi€N(v) to make des=1 such that
= H,U{w;} > does not contains any isolated vertex. Clearly
HyU [w;) forms a minimal total dominating set of &. Now in
(6], 1et AcVIL(E)) be the set of vertices corresponding to
the edges which are incident to the vertices of H in €. Let
there exists a subset D = {uy s 4z v szl A of vertices
with deg(u)=3l=<i=<k and Nlul=V(L(C), Further
ldeg(u) — deg (w)l < 2 Vu € D gnd w € VIL(G)] - D has at least
one vertex in D.Clearly £ forms a minimal Strong dominating
set in L(C], Therefore it follows that 12! = IV(6)l - 17 U fwi}l and
hence vs (€)= P— 4, (G),

Theorem 4: For any connected (p.q) graph  ©,
¥or (6) + ¥ (6) + 2 £ &, (6) + B,(6) +¥(E)

Proof: Let A={v .vs. v i} SV(6) be the set of
vertices with des(v;) = 2wy, € 4.1 <) <m which are at distance at
least two covers all the edgesin €. Clearly 4l =), Further if
for any vertex X€A, N(X)eV(G)-A Then A jtsalf is an
independent vertex set. Otherwise A“YA where A<A and
A cV(G)-A forms a maximum independent set of G with
‘A&UAz‘:bo(G)_
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Now let S=AUA where AcA and A <V(®)-Ape the minimal
set of vertices which covers all the vertices in G. Clearly S
forms a minimal 9- set of G. Suppose the subgraph (S has
only one component. Then S itself is a connected dominating
set of G. Otherwise if the subgraph (S) has more than one
component, then attach the minimum number of vertices
{w}eV(6)-S ywhere deg(w,)22 \hich are between the vertices

of S suchthat = SU{WJ'} forms exactly one component in

the subgraph (S). Clearly S formsaminimal 9- set of G. Let
D={u,u, b jcC  wheae C js the set of vertices
corresponding to the edges which are incident with the vertices
of Sin 6. The minimal set of vertices with N[P1= V(L(G))
and VU €D has degree greater or equal to those vertices
u eV(L(6))-P Clearly Dforms a Strong line dominating set in

L(G).  Therefore  [Dlv[s|+2<|AUlAVUAlYlS  and  hence
gi(G)+gc(G)+25a0(G)+bD(G)+g(G)
Theorem 5: For any connected (P.a)_ graph G,

95 (G)+9,(G)<a, (G)+hb,(G)+d (G)

Proof: Let A=18:&&J SE(G) 1o the maximal st of
edges with N(&)N(e)=e for every ©& €A 1ci<n,
1<j<n gnd ©<E(G) —-A. Clealy A forms a maximal
independent edge set in G. Suppose B={%:Var+Vo} pe the set
of vertices which are incident with the edges of A and if
|B|: P. Then A itsdf is an edge covering number.
Otherwise consider the minimum number of edges
(e} SE(G)=A gich that A =AY{8} forms a minimal edge
covering set of G. Let ©={VV2rVi} EV(G) pe the set of all
end vertices, Then S=CUC where € <V(G)-C be the set of
vertices covering all the vertices with diam(u,v) > 3 VueC
, veC' or for every vertex WeV (G)=S there exists at least
onevertex 2€V(G)=S where znw=¢and YE€S. Clealy S
forms aminimal 9 - set of G. Suppose € = €. Then 2 itself
forms a minimal 9 —sét of G gt D= {Uitti] =V (L(G))
be the minimum set of vertices with N[4i1=V(L(®)) for every
UjeD 1<j<k |t vo, € V(L(G)) has degree at most 2 and
v; € VIL(G)] - D then (0} u{v) forms a strong line dominating
set. Hence M2}V (v}l = v5: (6), Since for any graph G there
exists a leas one edge e with [9e9(e)=d(S)  Thyus
(D} Uiv}|us < |A]u[AlL|deg(e)

There fore 9 (6)+9,(G)<a:(G)+b.(G).a0). The following
theorem relates the Strong line domination number and Roman
domination number of 7.

Theorem 6: For any non trivial tree T with #=:, then
¥ M) = 9, (M) - AT) + 1,

Proof: Let V(M —~{012} and partition the vertex set V()

into (Ve:V:V2) induced by f with Ml=n for i=012

Suppose the set Y2 dominates v . Then S=Vi“V: forms a
minimal Roman dominating set of T. Further Ilet
A={u oV} SV (L(T)) pe the set of vertices with deg(v;) 2 3,
Suppose there exists a vertex set D<A with NIPI=V(L(T) and
if ‘deg(x)fdeg(y)‘SZ’ VxeD 0 er(L(T))—D. Then o forms
a Strong line dominating set in (7). Otherwise there exists at
least one vertex (W <A where (4¢P such that PV {W forms a
minimal 9= ~S& in L(T)_ Since for any tree G there exists at
least one vertex Y<V(T) of maximum degree A(T)
Do {wil<[si-ldea(v)[+1 Clearly, ¥s: )< va @) -4 +1

, then

Theorem 7: A Strong line dominating set P<V(L(G) js
minimal if and only if for each vertex X€ D one of the
following condition holds.

a) Thereexistsavertex Y=V(L(6)-Dgych that N(¥)"D={x}
b) Xisanisolated vertex in (0).
o) (V(L(©)-P)wix) is connected.

Proof: Suppose D isaminimal Strong line dominating set of

G and there exists a vertex X< D such that X does not hold
any of the above conditions. Then for some vertex V the set
D,=D-{¥} forms a Strong line dominating set of G by the
conditions (&) and (b). Also by (o), (V(L(C)-D) s
disconnected. Thisimpliesthat 2 isa Strong line dominating
set of G, acontradiction. Conversely, suppose for every vertex

Xe D one of the above statements hold. Further if D is not

minimal. Then there exists a vertex x<D suchthat P~ {X isa
Strong line dominating set of G and there exists a vertex

yeD-{¢ gqich that Y dominates X. That isY<N(X),
Therefore X does not satisfy (@) and (b). Hence it must satisfy
(C). Then there exists a vertex Y<V(L(6))-D gnd N(¥)nD={x},
Since P-1¥ isa Strong line dominating set of G, then there
exists a vetex 26019 and  ZEN(Y) Therefore
weN(y)ND \yhere WX, a contradiction to the fact that
N(Y) D ={x} gng <VI(L(G))-DIV{¥> i5 connected. Clearly
D isaminimal Strong line dominating set of G.

Theorem 8 For any connected (P.9) graph G,
95 (6)+9.(G)<diam(G) +9(6)-1 Equality holds with 7= :.

Proof: Let AQV(G) be the minimal set of vertices. Further,

there exists an edge set J<J where | is the set of edges
which are incident with the vertices of A congtituting the
longest path in G such that 9|=diam@) | & s
= VoY) € 4 pe the minimal set of vertices which
covers dl the vertices in G. Clearly & forms a minimal
dominating set of G. Suppose the subgraph <s'= s
connected. Then 5 itself isa 9 ~ € Otherwise there exists
at least one vertex *<V(©)-S and S =S Y{X forms aminima
connected dominating set of G. Now in L) et

F'={u,u,,..,u,} =V (L(G)) be the set of {uj}:{e]}eE(G)’

I<j<n where {ei} areincident with the verticesof S.
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Further let DcF be the set of vertices with N[D]=V(L(G))
and Yug € <V('-(G))_D>, deg (u;) < deg (u;) where Yu; €D,
Then P forms a Strong line dominating set of G. Otherwise
there exists at least one vertex {upev(L(6))-D such that
deg (u) = deg (u;) ¥u; €D Clearly OV {U} formsaminimal
9s =& G, Thus [PvtulVIs]<blvls|T,
9s (G)+9.(G) <diam(G)+g(G)-1

Hence

Theorem 9: For any non trivial tree T with £ = 3 vertices
and € number of cut vertices, then ¥s:(T) = C,

E :{Vl,vz,...,Vk} QV(T)

Proof: Let be the set of al cut

vertices in T with |7 1=C Further, tet A ={8&:-18}

be the set of edges which are incident with the vertices of F I.
Now by the definition of line graph, suppose
D= {U s} S A e the set of vertices which covers all the
vertices in L(T). deg (uz) = deg (u,) where ¥ux € D and
u, € V(L(T) = D). Clearly D forms a minimal Strong line
dominating set of .(T), PI<|F],
94 (T)<C

which gives Hence

e
Theorem 10: For any connected (P.a) graph G, gi(G)’M.

Proof: Let D={WVarVu} SV(L(G)) pe the minimal Strong

line dominating set of G. suppose!V(L(®)-P/=C Then the

result follows immediately. Further if V(L()-pf=2

then V(L(G))_D contains at least two vertices such that

2n< p. Hencegs_(G):n<|rp/2—l_

Theorem 11: For any non trivial tree T and T#Kanzl

e 9a (T)£G-A(T).

Proof: Let B={%era} SV(L(T) pe the set of all vertices
Suppose there exists a set of vertices

B ={U Uy} <V (L(T)) =B o thar dist(uj,vk)ZZ'
vu; e BI, Vi €B 1< j<m 1<k<n Then S=BUB
forms a Strong line dominating set of T . Otherwise if
B¢V(L(T)), then select the set of vertices S=8B" such that
N[S]= V(L) and the subgraph is disconnected. Clearly in
any case S forms a minimal Strong line dominating set of T

. Sincefor any tree T there exists at least one edge ee E(T)
with deg(e)= A(-I—).Weobtajn ‘S‘S‘E(T)‘*A(T).Therefore
9a (T)<a-A(T),

Theorem 12: For any acyclic ®.@) graph €, ¥s.(6) = i(6),
Where (&) s an independent domination number C.

Proof: Suppose 4 = (v 2.5 s v} S V(G) pe the
set of vertices which covers al the vertices in G. Further, if
Vv, €A degy; =0 then 4 jtself is an independent
dominating set of G. Otherwise 5 = 4 U, where Ac4 and
I V(6) — A forms a minimal independent dominating set of

B={Vi VeV €V (L(G)) Lt e set of al
a st of vertices

G. Now let
vertices. Suppose there exists

B, = {UUy U, SV(L(G)) =By deg () = des )

VueB VieB 1<i<n 1<j<m e
D=BUB forms a Strong line dominating set of O.

Otherwise if BZV(L(G)

, then select the set of vertices
S= Bl such  that N[D]:V(L(G))and Yu; €
(V(L(G))=D)  ren deg (uz) < deg () where ¥u; €D,
Clearly £ forms a Strong line dominating set of G.
{ufev(L(c))-D

D u{u}

Otherwise there exists at |east one vertex

such that deg (u) > deg (u;) Vu; €D Clearly

formsaminima 92 5% of G Hence PV {UW|<V @) g
clearly }'5;':'5) = i(G),

Theorem 13: For any connected (p.a) graph G, 9s (6)=1

it and only it -(G)

V(L(©))-1,

has at least one vertices of degree

Proof: To prove this result we consider the following two
Cases.

Case 1. Suppose L(G) has exactly one vertex v,

deg(v) =V (L(G))- 1. Then in this case D = {V} isa

minima 9s — Sl | D'={u}eN(v) ;, Vv(L(G))-D
deg(U) <v(L(6)-2, Then there exists at least one vertex
We N(u) in L(G) such that B:=D wi{w forms a Strong

line dominating set in L(G) acontradiction.

Case 2: Suppose L(©) contains at least two vertices L and
with 99 =V (L(©)] -1=ea(v) ;g VEN(U) ey D ={u]
dominates all the vertices in “(). Since ®W=N(LE)1 gng
V(L(G)) -D =V(L(G))—{u}_ Hence D, ={V} le' ere
V.2V(L(©)

-D forms a9s. ~ Set again a contradiction.

Conversely, wpposedeg(u):h/(l‘(e)n_l:deg(V)’ L o
! are adjacent to al the vertices in L(G). Then
Dlz{V}E N(U) where U € D', VEV(L(G))_DI and vice —

versa. In any case we obtain D :1.
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Therefore 9 (6)=1 suppose | ={VarVer =V} S S 1o the et of vertices
aia with dlam(a,b)23’ where 3€F.bel Then D=F U]
Theorem 14: For any connected (.q) graph L(G)
covers al the vertices in _Hence D formsa 9e - set

G.ys:(G) = YH{GJ.

Proof: let & be a maximum independent set of vertices in G
and ScS be the of al isolated vertices in O. Then
- 5-] us is a Strong split dominating set of G . since for
each vertex V€ (V =5)US either ¥ isan isolated vertex in
<(V=5)US > orthereexistsavertex ¥ €5 =5 and ¥
is adjacent to (V' =5)JUS is minima. Since & is
maximum (V-S)us is Thus
(v -5)uS"| =rul6).

minimum.

Let F= {80585 ..8,] pe set of edges in 6 and FgE(G:'.
L(G), D ={vy w303 s s ud  which
corresponds to Ve EF e deg(e) V&EF gy
degle)) Yo €E(G) = F gion that deg (o) 2 deg (g))

D ={v, v; .1

Then in

Suppose _ a0 and

N[ ]=V(L(®)) vyeD 1<k<i Then D forms a

r=st 1t follows tha PlEl=5)usT Hence

¥s(6) = va(C)

Corollary: For a tree T=Kia with 22 yertices

yal =+ -(rT)+1),

Theorem 15: For any connected {Ps‘i} graph

Gy (6) +7(L6)) + 1. (6) S g+ 14 7(6)

Proof: Let S= {V Var }QV(G) be the set of

vertices with 989(%) > 2 Suppose exists aset o1 S S of
dist(u, )23

vertices with which covers al the verticesin G

. Then S: forms a dominating set of G. Otherwise if

dlam(u,v)<3' then there exists at least one vertex X # S,

such that S=5u{x forms a minimal g - set of G . Hence
ST=7(6) et G =1vivavi} €V (L(G)) g the set of
vertices with dlst(u,v)23
D,cC

. Suppose there exists a set
L(G). Then P:
dist(u,v)<3

1which covers all the vertices in

itself is a line dominating set. If and

N[Dl]iv(L(G)),then D' =D, W \ypere WE NIV

, Ve D, forms a minimal dominating set of L(G). Hence
|D1U{W}|:gL(G). The edges which are incident with the

vertices of S in G corresponds to the set of vertices S~ =
VarVa, Vm}gV(L(G))' Let F ' bethe set of vertices
with d@(V):l Yve F

of L(G). Otherwise there exists a vertex Ze
N(F )UN(I) and D=F vl U{Z} forms aminimal cototal

dominating set of .(©). Hence \D\:gQ(L(G))_ We consider
A= {el’%""’ek}be the set of all edges which are incident to
F V(L)) =

D ={U,t,,-, U} = A the set of vertices which covers dl the

the vertices of Since E(G)  then

vertices in L(6). Clealy ¥ forms a minimal Strong line

dominating set of L(C), Therefore it implies that
ID|w D]y D, u{w}| <|E@G)|u|S|+1 Thus
}'5;(5) + }",;;(L(G:]] + }’..(G} =g+ 1+ ]‘{Gl

Theorem 16 For any  connected {F’-‘?}graph

G.Tj; I:Gj < d.am{ﬂ]

Proof: Let 7 =18 &} S E(G) pe the minimal set of
edges which constitute the longest path between any two
U,VE V(G) g, dist(uv)=diam(G) | 4
u,} EVILIG)] pe the set of vertices such that
{u}={e}€E(C) 1<isnwhere () are incident with the
vertices of /. Suppose ?cH be the set of vertices with
deg(w)=3 for every we€D such that ~D]=ve©) and
v, e VILG)] -2, Then P}V (v} forms a Strong line dominating
set. It followsthat HD} U (v}l < diam(G), Hence 75.(C) < diam(G),

distinct vertices
B={u g a0 s

Theorem 17: For any connected (. G,

95 (G)+9a(L(G)) <p+A(G)

graph

Proof: Let f:V(L(©)={012 ang partition the vertex set
V(L(®) into (%MVa) induced by  with MI=n for 1=012,

Supposethe set Yz dominates Vo. Then S=ViYV: formsa

L(G),

minimal roman dominating set of Further, let
F={V,V,,....V,

JeVv(L(e)) be the set of vertices with
deg(vi)zz

N[D]=V(L(6))

. Suppose there exists a vertex set D<F with
and if |deg(x)—deg(y)|§1’ vV xeD ’
yeV(L(G))-D Then D forms a Strong line dominating set in
L(G). Otherwise there exists at least one vertex ("/<F where
W eD gich that PVW forms a minimal 9.~ S8t jn
L(S). Since for any graph G there exists at least one vertex

VeV(G) o maximum degree  2(G), it follows that
[puiw|wls< pulde(v) | Clearly 9a (G)+9x(L(G)) < p+A(G)

connected (.9

Theorem 18: For any graph G,

'}'g;_(cj = }'(G) + Y;_(G)_
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Proof: Suppose €={v.w.vs .} SV6) be the set of
vertices with dez(v) = 2. Then there exists a minimal set Sc«
and ¥Is1=V(6). Clearly 5 forms a dominating set of . Let
C, ={VyV,,... Vo <V (L(G))

p dist(u,v) >3

be the corresponding to the set of
. Suppose there exists a set . =
which covers all the vertices in (%), Then Diitsdlf is a line
dominating  set. Further if dist(u,v) <3 and
N[Dl];tV(L(G)), then D= Dlu{w}, where W& N[v]
ve D, L(G)

vertices € wit

forms a minimal dominating set of .Hence
|D| =0, (G) Let H ={ug s us i uy} € VILIG)] pe the set
of vertices such that {u:} = {e) € E(G), 1 2i<n where {&] are
incident with the vertices of €. Suppose D'gH be the set of
vertices with des(w)=3 for every WwWED and
N[DT=V(L(6)) and ¥vi € VIL(E)] has degree at most 2, and
v e VILG)]I-D, Then ©Jufx} forms a Strong line

dominating set. It follows that P iul<[s
}*'5:_':5} = y(l) + ',.'_-_{IS:I'

YIP| and hence

Theorem 19: For
¥5.(6) = 7(C) + ¥(&),

any connected ®.4) graph G

Proof: Let C = {irVarVa} €V(6) pe the set of all non end
vertices in G. Suppose C <=C and wnevE)-¢ are
adjacent to at least one vertex of ¢. Then £ formsa 9. set
of G. Further, let F=lg.&..&] be the set of edges which

are incident to the vertices of C', and hence ‘C ‘zg(G). Let

Sg C be the 9. set of G. By the minimality for every
vertex veS, the induced subgraph (S-V) contains an isolated
vertex. Let S =1VIVES) 4 A be the set of isolated
verticesin <Sl> B=S-A_ Further let C be the minimum set

S_Sland each vertex of A is adjacent to
s =s-{suc)

of vertices of

some vertex of C. Clearly Cl<|A, Suppose
and every UV, E<S>, 1<i<k, clearly ‘S‘ :g‘(<s,>). Then
S forms a minima total dominating set of G. Let
H={ug g ugeeug ) EVILEE) pe the set of vertices where
wi=(e)eE@, 1<i<n, and (&} are incident with the
vertices of €. Further let D ¥ be the set of vertices with
dgw)23 for every weD such that ~N[2I=vE©) and if
wy; € VILG)] has degree at most 2 and v e VIL@)]1-D, Then
{D}uw) forms a Strong line dominating set. Clearly it follows
that 1P VI =ICTVIS] ang hence 7@ < (@) + #(6).

Theorem 20: For any connected (.4} graph G () <4,(6),
Where 7% () is aglobal domination number of €.

Proof: Let § ={v .vs.v3. v} S V(6) be an independent
set of &. Since & has no isolated vertices, V-5 is dominating
set of ©. Clearly for very vertex ves W -s)u is a global
dominating set of .

Since IvV-9uiil= @) Let D =1{v, . v:, v, 00wyt © VIL(G))
be the minimal dominating set of L(G) and deg(v) =2vww €D
with deglvi) = 2wy, eVILE)] -2, Then 2 is a Strong

dominating set of ). It follows that [PI<[(V=S“13] ang
hence 7::(6) = 1, (6,
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