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INTRODUCTION 
 

Maize crop 
 
Maize (Zea mays L.), belonging to the grass family Poaceae is 
the most produced cereal at the world, surpassing the mark of 1 
billion tons produced in 2014 growing season. This crop has 
great economic, social and recently environmental importance 
due their grain serve as alternative raw material for ethanol 
production (Hertel et al., 2010). 
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ABSTRACT 

Maize (Zea mays L.) has been the subject of several studies involving correlation 
coefficient estimates and path analysis. This critical review discusses some systematic 
errors that have been observed in estimating of correlation coefficients and its possible 
impacts on accuracy of path analysis. In a first moment, an approach about the maize crop, 
origin, characteristics and biometric models commonly used in genetic breed
crop is presented. Some obstacles found in estimates of path coefficients and the methods 
used to adjust them are discussed. We also present evidences and a theoretical explanation 
that some data arrangement methods currently used, may be overe
coefficients in scientific studies. Data from a literature search revealing the accuracy of 
path analysis of some research are presented and discussed. In a last moment, we present a 
future perspective about how the correct estimate of the correlation coefficients may 
improve the accuracy of path analysis, underscoring the need for research directed to this 
objective. 
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The world's leading producers of this cereal is the United 
States, China and Brazil. It is known that the currently known 
maize is the result of a long evolutionary process, being the 
hypothesis most accepted that it evolved from the teosinte, with 
the center of origin in Central America, specifically in Mexico. 
During this process, genetic events were decisive for the 
change in plant architecture and crops' inflorescence 
characteristics. Two quantitative traits loci (QTL) were 
identified as the main respon
differences between these species. The first (TB1) located on 
arm of chromosome 1L has effects on the gender of the 
inflorescence and the number and length of internodes on the 
lateral branches; the second, located on arm of chr
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impacts on accuracy of path analysis. In a first moment, an approach about the maize crop, 
origin, characteristics and biometric models commonly used in genetic breeding of this 
crop is presented. Some obstacles found in estimates of path coefficients and the methods 
used to adjust them are discussed. We also present evidences and a theoretical explanation 
that some data arrangement methods currently used, may be overestimating the correlation 
coefficients in scientific studies. Data from a literature search revealing the accuracy of 
path analysis of some research are presented and discussed. In a last moment, we present a 
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3L, affects the same characteristics. A study evaluating the 
segregation of these loci revealed that they present epistatic 
interrelationships turning together, substantially, the plant 
architecture and inflorescence (Doebley et al., 1995). The 
number of chromosomes present in the modern maize is 10, but 
it has long been suspected that this number was the result of a 
historical tetraploid event. Several observations point to this 
possibility, including the fact that the culture have duplicated 
chromosome segments (Gaut, 2001). Some of these segments 
were sequenced and the standard divergence between 14 pairs 
of duplicated genes was examined. The results indicated that 
the time in this sequences' duplication vary in two distinct 
groups, corresponding to about 20.5, and 11.4 million years 
ago. This observation indicates the possibility of a 
allotetraploid genomic event where his two diploid progenitors 
diverged about 20.5 million years ago, and that the 
allotetraploid event probably occurred approximately 11.4 
million years ago (Gaut and Doebley 1997). 

 
Maize breeding 
 
It is attributed to Darwin the first works with plant selfing, 
however, were East and Shull the pioneers in the study of the 
influence of successive selfing and exploitation of heterosis in 
maize. During the era of hybrid maize (1908 to present), the 
crop yield has increased almost six times (Lee and Tollenaar, 
2007). In early 1908, George Harrison Shull, published a paper 
with the title 'The composition of the field of maize', marking 
the beginning of the exploitation of heterosis in plant breeding, 
certainly one of the greatest genetic triumphs of our time. In his 
work, Shull showed that inbred lines of maize, subjected to 
several cycles of selfing showed significant reduction in vigor 
and grain yield; however, the hybrids resulting from two inbred 
lines had these features recovered, often featuring performance 
and superior vigor of varieties from which the inbred lines were 
derived (Shull, 1908). At the same time, Edward Murray East, 
made similar experiments and also recognized the deleterious 
effects of inbreeding in maize plants; however, did not realize 
the value of crossing inbred lines, up to study Shull's paper. 
East was not convinced of the usefulness of the idea, because, 
really, inbred lines produced a very small amount of seeds, 
burdening any increase in production provided by hybrids. 
Both were at odds, but have remained true to their findings 
(Crow, 1998) 
 
The limitation in seeds' production was surpassed later (1918) 
from an idea of Donald Forsha Jones, who while still a 
graduate student, defended the idea of using four genetic bases, 
or double-cross hybrids. The principle involved crossing two 
inbred lines and later, crossing of this hybrid with another, 
resulting from two other inbred lines. These hybrids were 
somewhat more variable compared with simple hybrids, 
however, much less than the open-pollinated varieties existing 
at that time. As seeds were coming from a simple hybrid, the 
largest quantity of available seed improved the program 
viability (Jones, 1918). Increases in maize productivity was, no 
doubt, largely due to the discovery of heterotic effect; however, 
the evolution in agricultural practices, such as increased use of 
fertilizers, changes in plant's arrangement, cultivation practices 
and agricultural mechanization, were useful tools and that 
combined with the use of higher-genetically plants enabled the 

achievement of high yields currently observed. But, it would be 
possible to separate the contribution of these effects? Studies 
evaluating the productivity of maize in a period of 70 yr. 
showed an average increase of 65-75 kg ha-1 yr-1, and that 
genetic breeding was responsible for about 50% of this increase 
(Duvick, 2005, 1977). A maize ideotype had been proposed by 
(Mock and Pearce, 1975). The ideotype that should produce 
optimally when grown in an environment without limitations of 
edaphoclimatic factors, high plant density and reduced spacing 
between rows, it is characterized by: a) rigid vertically-oriented 
leaves above ear (leaves below the ear should be horizontally-
oriented); b) maximum photosynthetic efficiency; c) efficient 
conversion of assimilates in grains; d) short interval between 
pollination and the emergence of style-stigmas; e) prolificacy; 
f) small size of cobs; g) insensitivity to photoperiod; h) cold 
tolerance in the germination (for cultivated genotypes in areas 
where early sowing takes place in cold or wet soil); i) as long 
as possible grain filling; and j) slow leaves senescence. 
 
In this regard, studies aiming at a higher-plant architecture 
(Tian et al., 2011), better floral sync (Buckler et al., 2009), 
improved photosynthetic efficiency (Fracheboud et al.,1999) 
and absorption of nutrients (Gallais and Hirel, 2004) has been 
successful. The combination of all the favorable characteristics 
in a single hybrid, however, is a daunting task for breeders 
mainly due, in most part, the traits are expressed by different 
genic actions (Sa et al., 2014). Success in maize breeding, as 
well as in other economically important crops also was due to 
wider use of statistic-experimental models in the selection of 
superior hybrid, introduced by Fisher, involving repetition, 
randomization and local control. The author states the 
importance of a thorough selection in a plant breeding program. 
In the case of simple maize hybrids in particular, this process 
occurs in three steps. 1) choice of individuals in a population to 
start the process; 2) artificial selfing of these individuals aiming 
to inbreeding and selection of pure lines and 3) artificial 
crosses. If plants are randomly selected in each step, the 
hybrids are actually a random sample of the original 
population. Thus, the criteria-based selection in the three steps 
should be considered. At first, the selection resembles the mass 
selection, practiced in breeding of open-pollinated varieties. In 
the second, the selection is neutralized quickly by rapid 
fixation, due to homozygosity increase in 50% each generation; 
so Fisher emphasized that the selection in the last step, should 
be greater emphasis. In fact, the selection at this step is 
important as it is being practiced in the studied subject (Fisher, 
1925). 

 
Biometric models used in maize hybrids 
 
Several statistical models has been use to evaluate the 
performance of maize hybrids. Models that allow the partition 
of genotype x environment interaction into environmental and 
genetic components are useful to evaluate the adaptability and 
stability of hybrids, especially in assessment of value for 
cultivation and use. Mixed models with fixed and random 
variance components has also proved efficient to identify 
promising hybrids in breeding programs (Baretta et al., 2016). 
Knowledge of association degree between traits is of 
fundamental importance in plant breeding programs. This 
importance increases, especially if some desirable trait present 
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difficulty in assessment, or low heritability (Cruz et al., 2014). 
The Pearson product-moment correlation coefficient (Pearson, 
1920), has been widely used for this purpose. Although this 
correlation reveals the direction and degree of linear 
association between a pair of traits, it does not show 
interrelationships of cause and effect. Thus, Sewall Wright in 
his work entitled 'Correlation and causation' (Wright, 1921) 
proposed a method known as 'path analysis' allowing this 
understanding. The method is based on partitioning of the 
linear correlation coefficient into direct and indirect effects of a 
group of explanatory traits on response of a dependent trait. 
Path analysis has been highlighted in breeding area because the 
selection aiming improving a desirable trait that has difficulty-
measure and low heritability, can be indirectly carried out by 
another trait, directly associated with desirable trait, but that 
shows high heritability and is easy to measure. In maize, as 
well as in several world-important crops, studies using path 
analysis has been successful in the sense of revealing the 
interrelationships between traits, be them yielding, grain 
quality or the effects of interaction genotype x environment or 
management of cultivation (Adesoji et al, 2015, 2015; Jadhav 
et al, 2014; Ma et al, 2015; Nardino et al, 2016). Studies with 
path analysis in maize were succeeded in revealing the 
interrelationships between yield components. In summary, the 
results converge to a common conclusion: the number of 
kernels per ear and thousand-kernel weight are the traitswith 
greater direct association with grain yield (Adesoji et al., 2015; 
Khameneh et al., 2012; Mohammadi et al., 2003; Reddy                    
et al., 2012). As the heritability in the broad sense of these trait 
is high (> 0.90), indirect selection from these traits aiming at 
increasing grain yield (trait highly influenced by the 
environment) can be effective (Ojo et al., 2006). 

 
Path analysis conception 
  
Path analysis is originally based on ideas developed by Sewall 
Wright (Wright, 1921), however from its conception to the 
method's consolidation, some disagreement about the reliability 
of the mathematical method that explains the relationships of 
cause and effect were observed. In 1922, Henry E. Niles, in his 
paper entitled “Correlation, Causation and Wright's theory of 
path coefficients”, made a criticism of the method proposed by 
Wright, claiming that the philosophical basis of the path 
coefficients method was doubtful. Niles, testing Wright's 
method, had observed in some of its results correlations 
exceeding | 1 |, saying “these results are ridiculous” and that 
Wright would have to provide much more convincing 
evidences than he was presenting (Niles, 1922). In the 
following year, Sewall Wright in his paper entitled “The theory 
of path coefficients: a reply to Niles's criticism”, consolidates 
his method concluding that Niles seemed to be based on 
incorrect mathematical concepts, result of a failure to recognize 
that path coefficient it is not a symmetric function of two traits, 
but it necessarily has direction. Wright concludes his work by 
stating that the path analysis does not provide a formula to infer 
causal relationships from knowledge of the correlations; it is, 
however, within certain limitations, a method of evaluating the 
logical consequences of a causal hypothesis relationship in a 
system of correlated traits. It adds that the criticism offered by 
Niles nothing invalidates the theory or application of path 
coefficient (Wright, 1923). Currently, the statistical method of 

path coefficient is consolidated and worldwide used in several 
areas of science. In order to estimate path coefficients, normal 
equations models are used to partition the linear coefficients 
into direct and indirect effects of a set of explanatory traits on a 
dependent trait. Thus, their estimates need a previously-
estimated linear correlation matrix among traits in study. 

 
Estimation of linear correlation 
 
One of the most used measures in breeding in order to estimate 
the direction and degree of linear association between two 
random traits is the Pearson product-moment correlation 
coefficient. To estimate the degree of association between two 
hypothetical traits X and Y, let's consider the following 
assumption. The traits should form the following dataset.               
(X1, Y1), (X2, Y2)...(Xn, Yn). Thus, correlation coefficient 
estimates between X and Y is obtained by the following 
equation: 
 

 

Were,

n

i i
i=1

{(X -X)(Y -Y)} is the covariance  

XY; n n
2 2

i i
i=1 i=1

(X -X) (Y -Y)  is the product of standard deviation 
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Although the merit of this analysis had been attributed to Karl 
Pearson, the method was originally designed by Francis Galton, 
who defined the term correlation as to the following: “two 
variables are said to be co-related when the variation of the one 
is accompanied on the average by more or less variation of the 
other, and in the same direction” (Galton, 1888). So, your 
estimate takes into account the covariance between two traits, 
represented here by XY divided by the product of respective 
standard deviation of X and Y. Taking into account the premise 
of this analysis, the traits which will be correlated, have being, 
mandatorily, assessed in the same subject, in order to represent 
the actual covariance and standard deviation of the set of 
observations. 
 
Path analysis estimation 
 
After obtaining linear correlation estimates (r), partitioning of 
linear correlations into direct and indirect effects of an 
explanatory dataset with p-traits can be performed by 
derivation of the set of normal equations (X'Xβ = X'Y) in order 
to estimate parameters of multiple regression using OLS. Thus, 
β estimate is given by: β = X’X-1 X’Y, where β is the partial 
regression coefficient (β1, β2, β3,...,βp) to p + 1 rows; X’X-1is the 
inverse of linear correlation matrix among explanatory traits; 
and X’Y is the correlation matrix between each explanatory 
trait with the dependent trait. After estimating the regression 
coefficients (βp), the direct and indirect effects of a set of p-
explanatory trait towards the dependent trait can be estimated. 

n

i i
i=1

n n
2 2

i i
i=1 i=1

{(X -X)(Y -Y)}

 = 

(X -X) (Y -Y)

r
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Consider the following example, where a set of explanatory 
traits (a, b, c and d) are used to explain the relationship of cause 
and effect on the response of dependent variable (y). After 
partial regression estimations (β1, β2, β3 eβ4), direct and indirect 
effects of ‘a’ on ‘y’ are given by: ra:y = β1+ β2ra:b +β3ra:c +β4ra:d, 

where ra:y is the linear correlation between ‘a’ e ‘y’, β1 is the 
direct effect of ‘a’ on ‘y’; β2a:bis the indirect effect of ‘a’ on ‘y’ 
via ‘b’, β3a:c is the indirect effect of ‘a’ on ‘y’ via ‘c’ andβ4a:dis 
the indirect effect of ‘a’ on ‘y’ via ‘d’. Similar equations are 
used in order to estimate direct and indirect effects of b, c, and 
d. The coefficient of determination of the model, i.e., how 
much of the variance in the dependent trait is explained by the 
interrelationship on explanatory traits, is given by R2 = β1ra:y + 

β2rb:y +β3rc:y+β4rc:y. Residual effect is estimated by: Noise = 

√1 − R�. 
 
This technique has facilitated the understanding of the 
interrelationship among traits and their effects on dependent 
trait in several areas of science, as in plant breeding and crop 
management (Abdala et al., 2016; Dewey and Lu, 1959; 
Farooq et al., 2015; Mohammadi et al., 2016; Nardino                 
et al., 2016; Olivoto et al., 2015; Souza et al., 2015), animal 
breeding (Norris et al., 2015; Önder and Abaci, 2015), 
environmental and social sciences (Hong et al., 2016; Xu                    
et al., 2014), humanities (Hagger et al., 2016) and several 
related areas. Indeed, path analysis has been a useful tool 
particularly in plant breeding, however, care must be taken 
prior the estimation of this analysis. Below we discuss some 
obstacles encountered in the estimates of the path coefficients. 

 
Difficulties observed in path analysis 
 
Although this analysis shows associations of cause and effect, 
its estimate is based on multiple regression principles. thus, it 
can be biased by complex nature of the data, wherein the 
response of the dependent trait is linked to a large number of 
explanatory traits that are often correlated between them 
(Graham, 2003). Correlated traits are difficult to analyze 
because its effect on the response variable may be due to any 
synergistic relationship between variables or spurious 
correlations. Thus, where two explanatory traits are highly 
associated, it is difficult to estimate the relationship of each 
individual explanatory trait, since these, as a whole contribute 
to the explanation of the linear relationship. This particularity is 
known as multicollinearity (Blalock, 1963).  

 
Matrices multicollinearity 
 

What is it? 
 
In multiple linear regression, data is fitted to a multiple linear 
model that predicts the values of a response variable (Y) from 
the weighted sum of several explanatory traits (Xi) and the 
random error (ε). Y = β0 + β1X1 + β2X2 + ... +βiXi + ε. Where β 
are regression coefficients. The main goal is to fit a model 
using the smallest number of traits that explain the most 
variance of response variable. If all explanatory traits are 
independent, each of the regression coefficients (βi) represent 
the total contribution of a given predictor in response trait; if, 
however, two or more explanatory traits are associated, partial 
regression coefficients need to be estimated to isolate the 

contribution of a single explanatory trait. The distinction 
between single contributions is the crucial point in multiple 
regression analysis and also the largest inferential problem 
encountered due to the presence of multicollinearity (Graham, 
2003; Gunst and Mason, 1977). When this phenomenon occurs 
in moderate or severe levels, the variances associated with path 
estimators can reach too high values, making unreliable 
estimates. Montgomery et al (2015), proposed a classification 
for multicollinearity based on the condition number (CN), i.e. 
the ratio between the largest and smallest eigenvalue of 
explanatory traits matrix. Thus, the degree of multicollinearity 
is considered weak, moderate and severe when CN ≤100 
between 100 and 1000 and ≥ 1000, respectively. Another 
indicator used to identify the presence of multicollinearity is 
called variance inflation factor (VIF), which as the name 
suggests, quantifies how much the variance of regression 
coefficient is inflated. For each of β coefficients in a multiple 
regression model, there is one VIF. When the VIF for a given 
predictor is 1, it means that there is no correlation between the 
predictor and the remainder of predictor traits. This fact is 
hardly observed. Can be taking as a rule, that the existence of 
VIFs greater than 10, are serious multicollinearity signals, 
being necessary to take some action to adjust it (Mansfield and 
Helms, 1982; O'Brien, 2007). Path coefficients at odds with 
biological expectation were observed when the analysis was 
performed in the presence of severe multicollinearity (Toebe 
and Cargnelutti, 2013). In addition to this, a study by (Petraitis 
et al., 1996) revealed that from 24 path analysis published in 
ecological studies, 15 had problems with multicollinearity, 
resulting in 13 cases with biased path coefficients. This 
information is worrying because in the case of plant breeding, 
path coefficients wrongly estimated and interpreted, may result 
in an inefficient selection, bringing into play the financial, 
human and time spent in the conduct of a plant breeding 
program. 

 
Methods for adjusting multicollinearity 
 
Although the problems related to multicollinearity presents 
itself as a difficulty in estimating path coefficients, some steps 
can be taken to mitigate its undesirable effects when it is 
detected by the aforementioned methods. It is now known that 
the exclusion of the traits responsible for inflating the variance 
of a regression coefficient is an effective technique and reduces 
the multicollinearity in matrices of explanatory traits (Jadhav   
et al., 2014). The identification of these traits, however, can 
become a difficult task. As previously discussed, the purpose of 
multiple regression (path analysis) is to identify a set of 
explanatory traits with high power, but which do not exhibit 
highly correlated. In this sense, there are several variable 
selection methods to choose a subset of predictors with 
minimal multicollinearity, such as hierarchical models, 
stepwise procedures and criteria-based models (George and 
McCulloch, 1993; Mitchell and Beauchamp, 1988; Nishii, 
1984; Wold et al., 1984). In a focused approach to plant 
breeding Cruz et al. (2014), discuss a method to identify the 
traits responsible for multicollinearity in a set of explanatory 
traits. This method is based on analysis of eigenvalues and 
eigenvectors of a symmetric positive definite matrix of 
explanatory traits and identifies the traits responsible for this 
problem, as that with the highest weight (component of the 
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eigenvector) associated to the eigenvalues of lesser magnitude. 
The exclusion of traits responsible for multicollinearity allowed 
estimating path coefficients, without its harmful effect, in 
research with several crops such as rice (Shrivastava and 
Sharma, 1976), canola (Coimbra et al.,1999), soybean (Bizeti 
et al.,2004) and maize (Toebe and Cargnelutti, 2013). It should 
be noted that the choice of traits for exclusion must be 
carefully, because traits with high explanatory power removed 
from the model, can reduce the coefficient of determination 
(R2), and increase the noise’s model (Cross et al.,2014).When 
the exclusion of multicollinearity-generating traits is not a 
procedure considered by researcher, e.g., due to a small number 
of explanatory traits, or the importance of knowing their 
effects, a second option is to perform the path analysis with all 
the explanatory traits, but with the addition of a small value in 
diagonal elements of X'X, known as ridge regression (Hoerl 
and Kennard, 1970).  
 
This method aims to reduce the variance associated with the 
OLS estimators. Thus, β estimates obtained in ridge regression 
are obtained similarly to the conventional method, however 
solving the partially-modified normal equations system 
(X’X+k)β = X’Y) generating β = (X’X+k)-1 X’Y, for  0< k<1. 
Where, β is the partial coefficient regression (β1, β2, β3,...,βp) to 
p + 1 rows; (X’X+k)-1is the inverse of linear correlation among 
explanatory traits with k constant included in diagonal 
elements; and X’Y is the correlation matrix between each 
explanatory traits with dependent trait. Using numerical 
examples in order to illustrate the effectiveness of this method, 
Marquardt (1970), concluded that the ridge regression method 
is efficient in estimating path analysis coefficients from non-
orthogonal data. In plant breeding, this technique also had 
proved effective in improving the conditioning of explanatory 
traits matrices in research of several economically-important 
crops (Bizeti et al., 2004; Coimbra et al., 1999; Luz et al., 
2011; Nardino et al., 2016; Nogueira et al., 2012; Olivoto                
et al., 2015; Souza et al., 2015) 

 
Can multicollinearity be reduced? 
 
Although the techniques for adjusting multicollinearity has 
been effective and widely known, such techniques are used 
after the diagnosis of the correlation matrix among explanatory 
traits, that is, its use is only possible after the estimation of 
linear correlation matrix. As previously discussed, 
multicollinearity is directly associated with high magnitude of 
correlation between explanatory traits in the model. In this 
sense, in order to estimate the actual correlation between two 
random traits (X and Y), the covariance and standard deviation 
should represent the population under study. In agronomic 
experiments, it is common assessing of several samples (plants) 
in each plot of each treatment, to represent the population 
(treatment). Such plants routinely make up an average of this 
specific plot, which will be used later for ANOVA and 
supplementary analysis, such as multiple-comparation analysis. 
In a bibliographic research project, were found, however, 
several studies that has been using these averages to estimate 
the correlation coefficients and then the path coefficients 
(Adesoji et al., 2015; Faria et al., 2015; Khameneh et al., 2012; 
Kumar and Babu, 2015; Nataraj et al., 2015, 2014; Rigon et al., 
2012; Toebe and Cargnelutti, 2013; Torres et al., 2015). 

Starting from the assumption that the average can mask the 
individual variances (of assessed plants), correlations estimated 
from these average do not represents the actual variance and 
standard deviation of the traits (x, y,... z) of the original 
population. In addition to the statistical concept 
methodologically biased, the inference of magnitude and 
direction of interrelationships between traits when the 
correlation is estimated with average data is misleading, 
because this inference is performed in a different population of 
the original (e.g. when all plants are used for this estimate). As 
large number of agronomic studies makes populational 
inferences based on sampling (plants), using the average value 
of these plants to estimate correlations and make inference to 
the original population, it is, without doubt, a misconception 
that should be considered. 

 
A theoretical explanation 
 
We take as an example an experiment to evaluate the direction 
and degree of association between trait of maize hybrids, 
conducted in a randomized block design with 5 treatments 
(simple hybrid) and four replications. In each replication (plot) 
is common to assess traits in several plants, aiming to represent 
the population of this specific plot. In experiments with maize 
hybrids usually are sampled 3 to 5 plants per plot, mainly 
because they present low phenotypic variation. So in this 
hypothetical experiment, we assume that in five plants of each 
plot were evaluated three traits (X, Y, Z). Researcher would 
then have the values of these three traits assessed in 100 plants 
(5 hybrids x 4 replications x 5 plants).  To estimate the 
correlation between X and Y, e.g., the following dataset is 
required: (X1, Y1), (X2, Y2), ..., (X100, Y100). Correlation 
coefficient is then given by applying the formulae described in 
“estimation of linear correlation”. When the researcher uses the 
average values of plots in order to correlation estimating, he is 
masking the deviations of each trait (X, Y and Z) relative to the 
overall average of these traits. In this case, the observed 
deviations among the five plants of each plot will be canceled 
out by the average of these plants.  
 
The new data set used for the same estimation of the 
correlation between X and Y in this methodology will then be: 
(X1, Y1), (X2, Y2), ..., (X20, Y20). The observed variance in the 
new dataset is then representing variance of average from five 
original sampled plants, and not the variance coming from all 
these plants; therefore, this variance is masked, and tends to 
present itself lower, compared to the original variance. This 
fact should be taken into account, because the inference of the 
direction and magnitude of association between characters is 
being made for a different population of the original. After in-
depth evaluation of the correlation formula ‘see estimation of 
linear correlation’, it is noted that the formulae's divisor is 
estimated by product of the standard deviations of X and Y. 
Then, when the correlation is estimated based on average data, 
generally showing less variation, the product of these 
deviations will present smallest. Assuming that the covariance 
between X and Y remain similar, dividing by a smallest 
divider, will result in a coefficient of correlation overestimated. 
But, could this mistake found in the correlation estimates be 
associated with higher multicollinearity problems in 
explanatory traits matrices and with the reduction of accuracy 
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in path analysis? This approach, as far as we known, is still 
lacking in the literature. 

 
Path analysis accuracy in ecological experiments 
 
In a randomized research of 25 studies using path analysis, we 
observed a certain contradiction regarding to information of the 
coefficient of determination (R2) and model's noise. For 
example, only five studies (20%) clearly showed the R2 and the 
noise in their results. In four studies (16%), only the R2 was 
presented, while in six studies (24%) only the noise was 
presented. In 10 studies (40%), neither of these parameters 
were found. This is alarming, because it can mask the 
interpretation of the reader in not to know how much of the 
variation in the dependent trait was explained by the model. In 
studies that showed adjustment measures, were observed R2 
fluctuating between 0.31 and 0.99 and noises ranging from 
0.105 to 0.680. It is also observed that in some cases, the noise 
approached of the R2, a fact that may cast doubt on the 
reliability of the estimated path coefficients (Table 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Future perspectives 
 

Research aimed to demonstrate if and how much the use of 
average values may overestimate the correlation coefficients, 
increase multicollinearity in analysis that use multiple 
regression and reduce its accuracy are necessary and certainly 
will be welcomed. Thus, by combining the correct estimate of 
correlation coefficients with the known methods to adjust 
multicollinearity, the accuracy of path analysis in biological 
studies could be improved. It is noteworthy that, completely 
eliminate the multicollinearity in matrices of explanatory traits 
is an almost impossible task, because the degree of 
interrelationship coming from the nature of the traits is 
inevitable. From a breeding viewpoint, the effectiveness of 
indirect selection based on path coefficients will depend then 
of: (i) researcher's ability to correctly estimating correlation 

coefficients; (ii) take the right steps to adjust multicollinearity 
of their matrices; (iii) include in group of predictors, traits that 
explain most of the observed variance in the dependent trait; 
and (iv) carry out the selection based on traits with high 
heritability and which are directly associated with the response 
in dependent trait. 

 
Final Considerations 
 
Path analysis has been helping researchers from several areas 
of science in order to reveal logical relationships of cause and 
effect. In maize genetic breeding, in particular, this technique 
has allowed the knowledge of the interrelationships between 
traits, enabling faster-indirect selection of lines in inbreeding 
process. The methods currently used for adjusting the 
multicollinearity of explanatory traits matrices are effective. 
Observation of studies with correlation coefficients 
tendentiously estimated and also studies in which have been 
hidden important information, such as coefficient of 
determination and model's noise, however, is worrying. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this sense, research aiming to compare the influence of 
average values on estimates of correlation coefficients and its 
impact on path analysis accuracy are needed, and could may 
help researchers reduce systematic errors in their experiments. 
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